Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | sstrd 3152 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: cossxp2 5127 fimacnv 5614 smores2 6262 f1imaen2g 6759 phplem4dom 6828 isinfinf 6863 fidcenumlemrk 6919 casef 7053 genipv 7450 fzossnn0 10110 seq3split 10414 1arith 12297 ctinf 12363 nninfdclemcl 12381 nninfdclemp1 12383 tgcl 12704 epttop 12730 ntrin 12764 cnconst2 12873 cnrest2 12876 cnptopresti 12878 cnptoprest2 12880 hmeores 12955 blin2 13072 ivthdec 13262 limcdifap 13271 limcresi 13275 dvfgg 13297 dvcnp2cntop 13303 dvaddxxbr 13305 reeff1olem 13332 |
Copyright terms: Public domain | W3C validator |