ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid GIF version

Theorem sstrid 3153
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1 𝐴𝐵
sstrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
sstrid (𝜑𝐴𝐶)

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3 𝐴𝐵
21a1i 9 . 2 (𝜑𝐴𝐵)
3 sstrid.2 . 2 (𝜑𝐵𝐶)
42, 3sstrd 3152 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  cossxp2  5127  fimacnv  5614  smores2  6262  f1imaen2g  6759  phplem4dom  6828  isinfinf  6863  fidcenumlemrk  6919  casef  7053  genipv  7450  fzossnn0  10110  seq3split  10414  1arith  12297  ctinf  12363  nninfdclemcl  12381  nninfdclemp1  12383  tgcl  12704  epttop  12730  ntrin  12764  cnconst2  12873  cnrest2  12876  cnptopresti  12878  cnptoprest2  12880  hmeores  12955  blin2  13072  ivthdec  13262  limcdifap  13271  limcresi  13275  dvfgg  13297  dvcnp2cntop  13303  dvaddxxbr  13305  reeff1olem  13332
  Copyright terms: Public domain W3C validator