| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | sstrd 3234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: cossxp2 5251 fimacnv 5763 smores2 6438 f1imaen2g 6943 phplem4dom 7019 isinfinf 7055 fidcenumlemrk 7117 casef 7251 genipv 7692 fzossnn0 10369 seq3split 10705 1arith 12885 ctinf 12996 nninfdclemcl 13014 nninfdclemp1 13016 mhmima 13519 znleval 14611 tgcl 14732 epttop 14758 ntrin 14792 cnconst2 14901 cnrest2 14904 cnptopresti 14906 cnptoprest2 14908 hmeores 14983 blin2 15100 ivthdec 15312 limcdifap 15330 limcresi 15334 dvfgg 15356 dvcnp2cntop 15367 dvaddxxbr 15369 reeff1olem 15439 domomsubct 16326 |
| Copyright terms: Public domain | W3C validator |