ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid GIF version

Theorem sstrid 3235
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1 𝐴𝐵
sstrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
sstrid (𝜑𝐴𝐶)

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3 𝐴𝐵
21a1i 9 . 2 (𝜑𝐴𝐵)
3 sstrid.2 . 2 (𝜑𝐵𝐶)
42, 3sstrd 3234 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  cossxp2  5251  fimacnv  5763  smores2  6438  f1imaen2g  6943  phplem4dom  7019  isinfinf  7055  fidcenumlemrk  7117  casef  7251  genipv  7692  fzossnn0  10369  seq3split  10705  1arith  12885  ctinf  12996  nninfdclemcl  13014  nninfdclemp1  13016  mhmima  13519  znleval  14611  tgcl  14732  epttop  14758  ntrin  14792  cnconst2  14901  cnrest2  14904  cnptopresti  14906  cnptoprest2  14908  hmeores  14983  blin2  15100  ivthdec  15312  limcdifap  15330  limcresi  15334  dvfgg  15356  dvcnp2cntop  15367  dvaddxxbr  15369  reeff1olem  15439  domomsubct  16326
  Copyright terms: Public domain W3C validator