ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid GIF version

Theorem sstrid 3208
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1 𝐴𝐵
sstrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
sstrid (𝜑𝐴𝐶)

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3 𝐴𝐵
21a1i 9 . 2 (𝜑𝐴𝐵)
3 sstrid.2 . 2 (𝜑𝐵𝐶)
42, 3sstrd 3207 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  cossxp2  5215  fimacnv  5722  smores2  6393  f1imaen2g  6898  phplem4dom  6974  isinfinf  7009  fidcenumlemrk  7071  casef  7205  genipv  7642  fzossnn0  10319  seq3split  10655  1arith  12765  ctinf  12876  nninfdclemcl  12894  nninfdclemp1  12896  mhmima  13398  znleval  14490  tgcl  14611  epttop  14637  ntrin  14671  cnconst2  14780  cnrest2  14783  cnptopresti  14785  cnptoprest2  14787  hmeores  14862  blin2  14979  ivthdec  15191  limcdifap  15209  limcresi  15213  dvfgg  15235  dvcnp2cntop  15246  dvaddxxbr  15248  reeff1olem  15318  domomsubct  16079
  Copyright terms: Public domain W3C validator