ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid GIF version

Theorem sstrid 3190
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1 𝐴𝐵
sstrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
sstrid (𝜑𝐴𝐶)

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3 𝐴𝐵
21a1i 9 . 2 (𝜑𝐴𝐵)
3 sstrid.2 . 2 (𝜑𝐵𝐶)
42, 3sstrd 3189 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  cossxp2  5189  fimacnv  5687  smores2  6347  f1imaen2g  6847  phplem4dom  6918  isinfinf  6953  fidcenumlemrk  7013  casef  7147  genipv  7569  fzossnn0  10242  seq3split  10559  1arith  12505  ctinf  12587  nninfdclemcl  12605  nninfdclemp1  12607  mhmima  13063  znleval  14141  tgcl  14232  epttop  14258  ntrin  14292  cnconst2  14401  cnrest2  14404  cnptopresti  14406  cnptoprest2  14408  hmeores  14483  blin2  14600  ivthdec  14798  limcdifap  14816  limcresi  14820  dvfgg  14842  dvcnp2cntop  14848  dvaddxxbr  14850  reeff1olem  14906
  Copyright terms: Public domain W3C validator