![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | sstrd 3190 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: cossxp2 5190 fimacnv 5688 smores2 6349 f1imaen2g 6849 phplem4dom 6920 isinfinf 6955 fidcenumlemrk 7015 casef 7149 genipv 7571 fzossnn0 10245 seq3split 10562 1arith 12508 ctinf 12590 nninfdclemcl 12608 nninfdclemp1 12610 mhmima 13066 znleval 14152 tgcl 14243 epttop 14269 ntrin 14303 cnconst2 14412 cnrest2 14415 cnptopresti 14417 cnptoprest2 14419 hmeores 14494 blin2 14611 ivthdec 14823 limcdifap 14841 limcresi 14845 dvfgg 14867 dvcnp2cntop 14878 dvaddxxbr 14880 reeff1olem 14947 |
Copyright terms: Public domain | W3C validator |