Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | sstrd 3157 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: cossxp2 5134 fimacnv 5625 smores2 6273 f1imaen2g 6771 phplem4dom 6840 isinfinf 6875 fidcenumlemrk 6931 casef 7065 genipv 7471 fzossnn0 10131 seq3split 10435 1arith 12319 ctinf 12385 nninfdclemcl 12403 nninfdclemp1 12405 mhmima 12706 tgcl 12858 epttop 12884 ntrin 12918 cnconst2 13027 cnrest2 13030 cnptopresti 13032 cnptoprest2 13034 hmeores 13109 blin2 13226 ivthdec 13416 limcdifap 13425 limcresi 13429 dvfgg 13451 dvcnp2cntop 13457 dvaddxxbr 13459 reeff1olem 13486 |
Copyright terms: Public domain | W3C validator |