![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | sstrd 3189 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: cossxp2 5189 fimacnv 5687 smores2 6347 f1imaen2g 6847 phplem4dom 6918 isinfinf 6953 fidcenumlemrk 7013 casef 7147 genipv 7569 fzossnn0 10242 seq3split 10559 1arith 12505 ctinf 12587 nninfdclemcl 12605 nninfdclemp1 12607 mhmima 13063 znleval 14141 tgcl 14232 epttop 14258 ntrin 14292 cnconst2 14401 cnrest2 14404 cnptopresti 14406 cnptoprest2 14408 hmeores 14483 blin2 14600 ivthdec 14798 limcdifap 14816 limcresi 14820 dvfgg 14842 dvcnp2cntop 14848 dvaddxxbr 14850 reeff1olem 14906 |
Copyright terms: Public domain | W3C validator |