| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | sstrd 3207 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: cossxp2 5215 fimacnv 5722 smores2 6393 f1imaen2g 6898 phplem4dom 6974 isinfinf 7009 fidcenumlemrk 7071 casef 7205 genipv 7642 fzossnn0 10319 seq3split 10655 1arith 12765 ctinf 12876 nninfdclemcl 12894 nninfdclemp1 12896 mhmima 13398 znleval 14490 tgcl 14611 epttop 14637 ntrin 14671 cnconst2 14780 cnrest2 14783 cnptopresti 14785 cnptoprest2 14787 hmeores 14862 blin2 14979 ivthdec 15191 limcdifap 15209 limcresi 15213 dvfgg 15235 dvcnp2cntop 15246 dvaddxxbr 15248 reeff1olem 15318 domomsubct 16079 |
| Copyright terms: Public domain | W3C validator |