ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid GIF version

Theorem sstrid 3194
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1 𝐴𝐵
sstrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
sstrid (𝜑𝐴𝐶)

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3 𝐴𝐵
21a1i 9 . 2 (𝜑𝐴𝐵)
3 sstrid.2 . 2 (𝜑𝐵𝐶)
42, 3sstrd 3193 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  cossxp2  5193  fimacnv  5691  smores2  6352  f1imaen2g  6852  phplem4dom  6923  isinfinf  6958  fidcenumlemrk  7020  casef  7154  genipv  7576  fzossnn0  10251  seq3split  10580  1arith  12536  ctinf  12647  nninfdclemcl  12665  nninfdclemp1  12667  mhmima  13123  znleval  14209  tgcl  14300  epttop  14326  ntrin  14360  cnconst2  14469  cnrest2  14472  cnptopresti  14474  cnptoprest2  14476  hmeores  14551  blin2  14668  ivthdec  14880  limcdifap  14898  limcresi  14902  dvfgg  14924  dvcnp2cntop  14935  dvaddxxbr  14937  reeff1olem  15007
  Copyright terms: Public domain W3C validator