| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | sstrd 3193 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: cossxp2 5193 fimacnv 5691 smores2 6352 f1imaen2g 6852 phplem4dom 6923 isinfinf 6958 fidcenumlemrk 7020 casef 7154 genipv 7576 fzossnn0 10251 seq3split 10580 1arith 12536 ctinf 12647 nninfdclemcl 12665 nninfdclemp1 12667 mhmima 13123 znleval 14209 tgcl 14300 epttop 14326 ntrin 14360 cnconst2 14469 cnrest2 14472 cnptopresti 14474 cnptoprest2 14476 hmeores 14551 blin2 14668 ivthdec 14880 limcdifap 14898 limcresi 14902 dvfgg 14924 dvcnp2cntop 14935 dvaddxxbr 14937 reeff1olem 15007 |
| Copyright terms: Public domain | W3C validator |