![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | sstrd 3167 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3137 df-ss 3144 |
This theorem is referenced by: cossxp2 5154 fimacnv 5648 smores2 6298 f1imaen2g 6796 phplem4dom 6865 isinfinf 6900 fidcenumlemrk 6956 casef 7090 genipv 7511 fzossnn0 10178 seq3split 10482 1arith 12368 ctinf 12434 nninfdclemcl 12452 nninfdclemp1 12454 mhmima 12881 tgcl 13704 epttop 13730 ntrin 13764 cnconst2 13873 cnrest2 13876 cnptopresti 13878 cnptoprest2 13880 hmeores 13955 blin2 14072 ivthdec 14262 limcdifap 14271 limcresi 14275 dvfgg 14297 dvcnp2cntop 14303 dvaddxxbr 14305 reeff1olem 14332 |
Copyright terms: Public domain | W3C validator |