| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressbas2d | GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| ressbasd.r | ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) |
| ressbasd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| ressbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| ressbas2d.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ressbas2d | ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas2d.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | df-ss 3210 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐴) |
| 4 | ressbasd.r | . . 3 ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | |
| 5 | ressbasd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 6 | ressbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 7 | basfn 13077 | . . . . . 6 ⊢ Base Fn V | |
| 8 | 6 | elexd 2813 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ V) |
| 9 | funfvex 5640 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 10 | 9 | funfni 5419 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 11 | 7, 8, 10 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘𝑊) ∈ V) |
| 12 | 5, 11 | eqeltrd 2306 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 13 | 12, 1 | ssexd 4223 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | 4, 5, 6, 13 | ressbasd 13086 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 15 | 3, 14 | eqtr3d 2264 | 1 ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 Fn wfn 5309 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 ↾s cress 13019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 |
| This theorem is referenced by: gsumress 13414 issubmnd 13461 ress0g 13462 submbas 13500 resmhm 13506 subgbas 13701 issubg2m 13712 resghm 13783 ablressid 13858 rngressid 13903 ringidss 13978 ringressid 14012 unitgrpbasd 14064 islss3 14328 lsslss 14330 lsslsp 14378 2idlbas 14464 zringbas 14545 expghmap 14556 mplbascoe 14640 |
| Copyright terms: Public domain | W3C validator |