| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressbas2d | GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| ressbasd.r | ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) |
| ressbasd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| ressbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| ressbas2d.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ressbas2d | ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas2d.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | df-ss 3210 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐴) |
| 4 | ressbasd.r | . . 3 ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | |
| 5 | ressbasd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 6 | ressbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 7 | basfn 13099 | . . . . . 6 ⊢ Base Fn V | |
| 8 | 6 | elexd 2813 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ V) |
| 9 | funfvex 5646 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 10 | 9 | funfni 5423 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 11 | 7, 8, 10 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘𝑊) ∈ V) |
| 12 | 5, 11 | eqeltrd 2306 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 13 | 12, 1 | ssexd 4224 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | 4, 5, 6, 13 | ressbasd 13108 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 15 | 3, 14 | eqtr3d 2264 | 1 ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 ↾s cress 13041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-inn 9119 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 |
| This theorem is referenced by: gsumress 13436 issubmnd 13483 ress0g 13484 submbas 13522 resmhm 13528 subgbas 13723 issubg2m 13734 resghm 13805 ablressid 13880 rngressid 13925 ringidss 14000 ringressid 14034 unitgrpbasd 14087 islss3 14351 lsslss 14353 lsslsp 14401 2idlbas 14487 zringbas 14568 expghmap 14579 mplbascoe 14663 |
| Copyright terms: Public domain | W3C validator |