ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbas2d GIF version

Theorem ressbas2d 13087
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
ressbasd.r (𝜑𝑅 = (𝑊s 𝐴))
ressbasd.b (𝜑𝐵 = (Base‘𝑊))
ressbasd.w (𝜑𝑊𝑋)
ressbas2d.ss (𝜑𝐴𝐵)
Assertion
Ref Expression
ressbas2d (𝜑𝐴 = (Base‘𝑅))

Proof of Theorem ressbas2d
StepHypRef Expression
1 ressbas2d.ss . . 3 (𝜑𝐴𝐵)
2 df-ss 3210 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
31, 2sylib 122 . 2 (𝜑 → (𝐴𝐵) = 𝐴)
4 ressbasd.r . . 3 (𝜑𝑅 = (𝑊s 𝐴))
5 ressbasd.b . . 3 (𝜑𝐵 = (Base‘𝑊))
6 ressbasd.w . . 3 (𝜑𝑊𝑋)
7 basfn 13077 . . . . . 6 Base Fn V
86elexd 2813 . . . . . 6 (𝜑𝑊 ∈ V)
9 funfvex 5640 . . . . . . 7 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
109funfni 5419 . . . . . 6 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
117, 8, 10sylancr 414 . . . . 5 (𝜑 → (Base‘𝑊) ∈ V)
125, 11eqeltrd 2306 . . . 4 (𝜑𝐵 ∈ V)
1312, 1ssexd 4223 . . 3 (𝜑𝐴 ∈ V)
144, 5, 6, 13ressbasd 13086 . 2 (𝜑 → (𝐴𝐵) = (Base‘𝑅))
153, 14eqtr3d 2264 1 (𝜑𝐴 = (Base‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197   Fn wfn 5309  cfv 5314  (class class class)co 5994  Basecbs 13018  s cress 13019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026
This theorem is referenced by:  gsumress  13414  issubmnd  13461  ress0g  13462  submbas  13500  resmhm  13506  subgbas  13701  issubg2m  13712  resghm  13783  ablressid  13858  rngressid  13903  ringidss  13978  ringressid  14012  unitgrpbasd  14064  islss3  14328  lsslss  14330  lsslsp  14378  2idlbas  14464  zringbas  14545  expghmap  14556  mplbascoe  14640
  Copyright terms: Public domain W3C validator