| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressbas2d | GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| ressbasd.r | ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) |
| ressbasd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| ressbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| ressbas2d.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ressbas2d | ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas2d.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | df-ss 3181 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐴) |
| 4 | ressbasd.r | . . 3 ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | |
| 5 | ressbasd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 6 | ressbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 7 | basfn 12940 | . . . . . 6 ⊢ Base Fn V | |
| 8 | 6 | elexd 2787 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ V) |
| 9 | funfvex 5603 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 10 | 9 | funfni 5382 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 11 | 7, 8, 10 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘𝑊) ∈ V) |
| 12 | 5, 11 | eqeltrd 2283 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 13 | 12, 1 | ssexd 4189 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | 4, 5, 6, 13 | ressbasd 12949 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 15 | 3, 14 | eqtr3d 2241 | 1 ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3167 ⊆ wss 3168 Fn wfn 5272 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 ↾s cress 12883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-inn 9050 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-iress 12890 |
| This theorem is referenced by: gsumress 13277 issubmnd 13324 ress0g 13325 submbas 13363 resmhm 13369 subgbas 13564 issubg2m 13575 resghm 13646 ablressid 13721 rngressid 13766 ringidss 13841 ringressid 13875 unitgrpbasd 13927 islss3 14191 lsslss 14193 lsslsp 14241 2idlbas 14327 zringbas 14408 expghmap 14419 mplbascoe 14503 |
| Copyright terms: Public domain | W3C validator |