| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressbas2d | GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| ressbasd.r | ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) |
| ressbasd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| ressbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| ressbas2d.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ressbas2d | ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas2d.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | df-ss 3170 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐴) |
| 4 | ressbasd.r | . . 3 ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | |
| 5 | ressbasd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 6 | ressbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 7 | basfn 12761 | . . . . . 6 ⊢ Base Fn V | |
| 8 | 6 | elexd 2776 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ V) |
| 9 | funfvex 5578 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 10 | 9 | funfni 5361 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 11 | 7, 8, 10 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘𝑊) ∈ V) |
| 12 | 5, 11 | eqeltrd 2273 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 13 | 12, 1 | ssexd 4174 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | 4, 5, 6, 13 | ressbasd 12770 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 15 | 3, 14 | eqtr3d 2231 | 1 ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 Fn wfn 5254 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 ↾s cress 12704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 |
| This theorem is referenced by: gsumress 13097 issubmnd 13144 ress0g 13145 submbas 13183 resmhm 13189 subgbas 13384 issubg2m 13395 resghm 13466 ablressid 13541 rngressid 13586 ringidss 13661 ringressid 13695 unitgrpbasd 13747 islss3 14011 lsslss 14013 lsslsp 14061 2idlbas 14147 zringbas 14228 expghmap 14239 |
| Copyright terms: Public domain | W3C validator |