ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbas2d GIF version

Theorem ressbas2d 13109
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
ressbasd.r (𝜑𝑅 = (𝑊s 𝐴))
ressbasd.b (𝜑𝐵 = (Base‘𝑊))
ressbasd.w (𝜑𝑊𝑋)
ressbas2d.ss (𝜑𝐴𝐵)
Assertion
Ref Expression
ressbas2d (𝜑𝐴 = (Base‘𝑅))

Proof of Theorem ressbas2d
StepHypRef Expression
1 ressbas2d.ss . . 3 (𝜑𝐴𝐵)
2 df-ss 3210 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
31, 2sylib 122 . 2 (𝜑 → (𝐴𝐵) = 𝐴)
4 ressbasd.r . . 3 (𝜑𝑅 = (𝑊s 𝐴))
5 ressbasd.b . . 3 (𝜑𝐵 = (Base‘𝑊))
6 ressbasd.w . . 3 (𝜑𝑊𝑋)
7 basfn 13099 . . . . . 6 Base Fn V
86elexd 2813 . . . . . 6 (𝜑𝑊 ∈ V)
9 funfvex 5646 . . . . . . 7 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
109funfni 5423 . . . . . 6 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
117, 8, 10sylancr 414 . . . . 5 (𝜑 → (Base‘𝑊) ∈ V)
125, 11eqeltrd 2306 . . . 4 (𝜑𝐵 ∈ V)
1312, 1ssexd 4224 . . 3 (𝜑𝐴 ∈ V)
144, 5, 6, 13ressbasd 13108 . 2 (𝜑 → (𝐴𝐵) = (Base‘𝑅))
153, 14eqtr3d 2264 1 (𝜑𝐴 = (Base‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197   Fn wfn 5313  cfv 5318  (class class class)co 6007  Basecbs 13040  s cress 13041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048
This theorem is referenced by:  gsumress  13436  issubmnd  13483  ress0g  13484  submbas  13522  resmhm  13528  subgbas  13723  issubg2m  13734  resghm  13805  ablressid  13880  rngressid  13925  ringidss  14000  ringressid  14034  unitgrpbasd  14087  islss3  14351  lsslss  14353  lsslsp  14401  2idlbas  14487  zringbas  14568  expghmap  14579  mplbascoe  14663
  Copyright terms: Public domain W3C validator