ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbas2d GIF version

Theorem ressbas2d 12520
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
ressbasd.r (𝜑𝑅 = (𝑊s 𝐴))
ressbasd.b (𝜑𝐵 = (Base‘𝑊))
ressbasd.w (𝜑𝑊𝑋)
ressbas2d.ss (𝜑𝐴𝐵)
Assertion
Ref Expression
ressbas2d (𝜑𝐴 = (Base‘𝑅))

Proof of Theorem ressbas2d
StepHypRef Expression
1 ressbas2d.ss . . 3 (𝜑𝐴𝐵)
2 df-ss 3142 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
31, 2sylib 122 . 2 (𝜑 → (𝐴𝐵) = 𝐴)
4 ressbasd.r . . 3 (𝜑𝑅 = (𝑊s 𝐴))
5 ressbasd.b . . 3 (𝜑𝐵 = (Base‘𝑊))
6 ressbasd.w . . 3 (𝜑𝑊𝑋)
7 basfn 12512 . . . . . 6 Base Fn V
86elexd 2750 . . . . . 6 (𝜑𝑊 ∈ V)
9 funfvex 5531 . . . . . . 7 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
109funfni 5315 . . . . . 6 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
117, 8, 10sylancr 414 . . . . 5 (𝜑 → (Base‘𝑊) ∈ V)
125, 11eqeltrd 2254 . . . 4 (𝜑𝐵 ∈ V)
1312, 1ssexd 4142 . . 3 (𝜑𝐴 ∈ V)
144, 5, 6, 13ressbasd 12519 . 2 (𝜑 → (𝐴𝐵) = (Base‘𝑅))
153, 14eqtr3d 2212 1 (𝜑𝐴 = (Base‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2737  cin 3128  wss 3129   Fn wfn 5210  cfv 5215  (class class class)co 5872  Basecbs 12454  s cress 12455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1re 7902  ax-addrcl 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-inn 8916  df-ndx 12457  df-slot 12458  df-base 12460  df-sets 12461  df-iress 12462
This theorem is referenced by:  issubmnd  12775  ress0g  12776  subgbas  12969  issubg2m  12980  ringidss  13143  ringressid  13169  unitgrpbasd  13215  zringbas  13355
  Copyright terms: Public domain W3C validator