ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elima2 GIF version

Theorem elima2 4887
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima2 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima2
StepHypRef Expression
1 elima.1 . . 3 𝐴 ∈ V
21elima 4886 . 2 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
3 df-rex 2422 . 2 (∃𝑥𝐶 𝑥𝐵𝐴 ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
42, 3bitri 183 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1468  wcel 1480  wrex 2417  Vcvv 2686   class class class wbr 3929  cima 4542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552
This theorem is referenced by:  elima3  4888  dminss  4953  imainss  4954  nqnq0pi  7260
  Copyright terms: Public domain W3C validator