ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1uniel GIF version

Theorem en1uniel 6908
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
en1uniel (𝑆 ≈ 1o 𝑆𝑆)

Proof of Theorem en1uniel
StepHypRef Expression
1 relen 6843 . . . 4 Rel ≈
21brrelex1i 4725 . . 3 (𝑆 ≈ 1o𝑆 ∈ V)
3 uniexg 4493 . . 3 (𝑆 ∈ V → 𝑆 ∈ V)
4 snidg 3666 . . 3 ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆})
52, 3, 43syl 17 . 2 (𝑆 ≈ 1o 𝑆 ∈ { 𝑆})
6 encv 6845 . . . . 5 (𝑆 ≈ 1o → (𝑆 ∈ V ∧ 1o ∈ V))
76simpld 112 . . . 4 (𝑆 ≈ 1o𝑆 ∈ V)
8 en1bg 6904 . . . 4 (𝑆 ∈ V → (𝑆 ≈ 1o𝑆 = { 𝑆}))
97, 8syl 14 . . 3 (𝑆 ≈ 1o → (𝑆 ≈ 1o𝑆 = { 𝑆}))
109ibi 176 . 2 (𝑆 ≈ 1o𝑆 = { 𝑆})
115, 10eleqtrrd 2286 1 (𝑆 ≈ 1o 𝑆𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3637   cuni 3855   class class class wbr 4050  1oc1o 6507  cen 6837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-id 4347  df-suc 4425  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-1o 6514  df-en 6840
This theorem is referenced by:  en1m  6909  en2eleq  7318  en2other2  7319
  Copyright terms: Public domain W3C validator