![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > en1uniel | GIF version |
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
en1uniel | ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 6394 | . . . 4 ⊢ Rel ≈ | |
2 | 1 | brrelexi 4443 | . . 3 ⊢ (𝑆 ≈ 1𝑜 → 𝑆 ∈ V) |
3 | uniexg 4232 | . . 3 ⊢ (𝑆 ∈ V → ∪ 𝑆 ∈ V) | |
4 | snidg 3450 | . . 3 ⊢ (∪ 𝑆 ∈ V → ∪ 𝑆 ∈ {∪ 𝑆}) | |
5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ {∪ 𝑆}) |
6 | encv 6396 | . . . . 5 ⊢ (𝑆 ≈ 1𝑜 → (𝑆 ∈ V ∧ 1𝑜 ∈ V)) | |
7 | 6 | simpld 110 | . . . 4 ⊢ (𝑆 ≈ 1𝑜 → 𝑆 ∈ V) |
8 | en1bg 6450 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ≈ 1𝑜 ↔ 𝑆 = {∪ 𝑆})) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝑆 ≈ 1𝑜 → (𝑆 ≈ 1𝑜 ↔ 𝑆 = {∪ 𝑆})) |
10 | 9 | ibi 174 | . 2 ⊢ (𝑆 ≈ 1𝑜 → 𝑆 = {∪ 𝑆}) |
11 | 5, 10 | eleqtrrd 2164 | 1 ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1287 ∈ wcel 1436 Vcvv 2614 {csn 3425 ∪ cuni 3630 class class class wbr 3814 1𝑜c1o 6109 ≈ cen 6388 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-nul 3933 ax-pow 3977 ax-pr 4003 ax-un 4227 |
This theorem depends on definitions: df-bi 115 df-3an 924 df-tru 1290 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ral 2360 df-rex 2361 df-reu 2362 df-v 2616 df-sbc 2829 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-nul 3273 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-br 3815 df-opab 3869 df-id 4087 df-suc 4165 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-rn 4415 df-res 4416 df-ima 4417 df-iota 4937 df-fun 4974 df-fn 4975 df-f 4976 df-f1 4977 df-fo 4978 df-f1o 4979 df-fv 4980 df-1o 6116 df-en 6391 |
This theorem is referenced by: en2eleq 6742 en2other2 6743 |
Copyright terms: Public domain | W3C validator |