ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1uniel GIF version

Theorem en1uniel 6858
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
en1uniel (𝑆 ≈ 1o 𝑆𝑆)

Proof of Theorem en1uniel
StepHypRef Expression
1 relen 6798 . . . 4 Rel ≈
21brrelex1i 4702 . . 3 (𝑆 ≈ 1o𝑆 ∈ V)
3 uniexg 4470 . . 3 (𝑆 ∈ V → 𝑆 ∈ V)
4 snidg 3647 . . 3 ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆})
52, 3, 43syl 17 . 2 (𝑆 ≈ 1o 𝑆 ∈ { 𝑆})
6 encv 6800 . . . . 5 (𝑆 ≈ 1o → (𝑆 ∈ V ∧ 1o ∈ V))
76simpld 112 . . . 4 (𝑆 ≈ 1o𝑆 ∈ V)
8 en1bg 6854 . . . 4 (𝑆 ∈ V → (𝑆 ≈ 1o𝑆 = { 𝑆}))
97, 8syl 14 . . 3 (𝑆 ≈ 1o → (𝑆 ≈ 1o𝑆 = { 𝑆}))
109ibi 176 . 2 (𝑆 ≈ 1o𝑆 = { 𝑆})
115, 10eleqtrrd 2273 1 (𝑆 ≈ 1o 𝑆𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618   cuni 3835   class class class wbr 4029  1oc1o 6462  cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-en 6795
This theorem is referenced by:  en2eleq  7255  en2other2  7256
  Copyright terms: Public domain W3C validator