| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en1uniel | GIF version | ||
| Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| en1uniel | ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 6843 | . . . 4 ⊢ Rel ≈ | |
| 2 | 1 | brrelex1i 4725 | . . 3 ⊢ (𝑆 ≈ 1o → 𝑆 ∈ V) |
| 3 | uniexg 4493 | . . 3 ⊢ (𝑆 ∈ V → ∪ 𝑆 ∈ V) | |
| 4 | snidg 3666 | . . 3 ⊢ (∪ 𝑆 ∈ V → ∪ 𝑆 ∈ {∪ 𝑆}) | |
| 5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ {∪ 𝑆}) |
| 6 | encv 6845 | . . . . 5 ⊢ (𝑆 ≈ 1o → (𝑆 ∈ V ∧ 1o ∈ V)) | |
| 7 | 6 | simpld 112 | . . . 4 ⊢ (𝑆 ≈ 1o → 𝑆 ∈ V) |
| 8 | en1bg 6904 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ≈ 1o ↔ 𝑆 = {∪ 𝑆})) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝑆 ≈ 1o → (𝑆 ≈ 1o ↔ 𝑆 = {∪ 𝑆})) |
| 10 | 9 | ibi 176 | . 2 ⊢ (𝑆 ≈ 1o → 𝑆 = {∪ 𝑆}) |
| 11 | 5, 10 | eleqtrrd 2286 | 1 ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3637 ∪ cuni 3855 class class class wbr 4050 1oc1o 6507 ≈ cen 6837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-suc 4425 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-1o 6514 df-en 6840 |
| This theorem is referenced by: en1m 6909 en2eleq 7318 en2other2 7319 |
| Copyright terms: Public domain | W3C validator |