ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domentr GIF version

Theorem domentr 6637
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
domentr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domentr
StepHypRef Expression
1 endom 6609 . 2 (𝐵𝐶𝐵𝐶)
2 domtr 6631 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 282 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   class class class wbr 3893  cen 6584  cdom 6585
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-f1o 5086  df-en 6587  df-dom 6588
This theorem is referenced by:  xpdom1g  6678  domen2  6688  phplem4dom  6707  phpm  6710  fisbth  6728  infnfi  6740  fientri3  6754  exmidfodomrlemr  7003  exmidfodomrlemrALT  7004  hashennnuni  10412  xpct  11748  pwf1oexmid  12877  sbthom  12902
  Copyright terms: Public domain W3C validator