ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domentr GIF version

Theorem domentr 6757
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
domentr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domentr
StepHypRef Expression
1 endom 6729 . 2 (𝐵𝐶𝐵𝐶)
2 domtr 6751 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 284 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   class class class wbr 3982  cen 6704  cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195  df-en 6707  df-dom 6708
This theorem is referenced by:  xpdom1g  6799  domen2  6809  phplem4dom  6828  phpm  6831  fisbth  6849  infnfi  6861  fientri3  6880  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  hashennnuni  10692  xpct  12329  pwf1oexmid  13879  sbthom  13905
  Copyright terms: Public domain W3C validator