ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domentr GIF version

Theorem domentr 6933
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
domentr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domentr
StepHypRef Expression
1 endom 6904 . 2 (𝐵𝐶𝐵𝐶)
2 domtr 6927 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 286 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   class class class wbr 4082  cen 6875  cdom 6876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-f1o 5321  df-en 6878  df-dom 6879
This theorem is referenced by:  xpdom1g  6980  domen2  6992  phplem4dom  7011  phpm  7015  fisbth  7033  infnfi  7045  fientri3  7065  exmidfodomrlemr  7368  exmidfodomrlemrALT  7369  hashennnuni  10988  xpct  12953  umgrislfupgrenlem  15913  lfgrnloopen  15916  pwf1oexmid  16296  sbthom  16325
  Copyright terms: Public domain W3C validator