ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrefg GIF version

Theorem enrefg 6612
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
enrefg (𝐴𝑉𝐴𝐴)

Proof of Theorem enrefg
StepHypRef Expression
1 f1oi 5361 . . 3 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1oen2g 6603 . . 3 ((𝐴𝑉𝐴𝑉 ∧ ( I ↾ 𝐴):𝐴1-1-onto𝐴) → 𝐴𝐴)
31, 2mp3an3 1287 . 2 ((𝐴𝑉𝐴𝑉) → 𝐴𝐴)
43anidms 392 1 (𝐴𝑉𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1463   class class class wbr 3895   I cid 4170  cres 4501  1-1-ontowf1o 5080  cen 6586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-en 6589
This theorem is referenced by:  enref  6613  eqeng  6614  domrefg  6615  mapdom1g  6694  fidifsnen  6717  nnfi  6719  onenon  6990  oncardval  6992  cardonle  6993  dju1en  7017  xpdjuen  7022  iseqf1olemqf1o  10159  hashun  10444
  Copyright terms: Public domain W3C validator