ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endomtr GIF version

Theorem endomtr 6844
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
endomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem endomtr
StepHypRef Expression
1 endom 6817 . 2 (𝐴𝐵𝐴𝐵)
2 domtr 6839 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 283 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   class class class wbr 4029  cen 6792  cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-f1o 5261  df-en 6795  df-dom 6796
This theorem is referenced by:  cnvct  6863  xpdom1g  6887  xpdom3m  6888  domen1  6898  mapdom1g  6903  phplem4dom  6918  phpm  6921  fict  6924  fisbth  6939  fientri3  6971  difinfsn  7159  pw1dom2  7287  qnnen  12588  nninfdc  12610  isnzr2  13680
  Copyright terms: Public domain W3C validator