ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliniseg GIF version

Theorem eliniseg 4981
Description: Membership in an initial segment. The idiom (𝐴 “ {𝐵}), meaning {𝑥𝑥𝐴𝐵}, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
eliniseg.1 𝐶 ∈ V
Assertion
Ref Expression
eliniseg (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))

Proof of Theorem eliniseg
StepHypRef Expression
1 eliniseg.1 . 2 𝐶 ∈ V
2 elimasng 4979 . . . 4 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
3 df-br 3990 . . . 4 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
42, 3bitr4di 197 . . 3 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
5 brcnvg 4792 . . 3 ((𝐵𝑉𝐶 ∈ V) → (𝐵𝐴𝐶𝐶𝐴𝐵))
64, 5bitrd 187 . 2 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
71, 6mpan2 423 1 (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  Vcvv 2730  {csn 3583  cop 3586   class class class wbr 3989  ccnv 4610  cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  epini  4982  iniseg  4983  dfco2a  5111  isoini  5797  pilem3  13498
  Copyright terms: Public domain W3C validator