| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliniseg | GIF version | ||
| Description: Membership in an initial segment. The idiom (◡𝐴 “ {𝐵}), meaning {𝑥 ∣ 𝑥𝐴𝐵}, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| eliniseg.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| eliniseg | ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliniseg.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | elimasng 5050 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ ◡𝐴)) | |
| 3 | df-br 4045 | . . . 4 ⊢ (𝐵◡𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ ◡𝐴) | |
| 4 | 2, 3 | bitr4di 198 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶)) |
| 5 | brcnvg 4859 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐵◡𝐴𝐶 ↔ 𝐶𝐴𝐵)) | |
| 6 | 4, 5 | bitrd 188 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| 7 | 1, 6 | mpan2 425 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 Vcvv 2772 {csn 3633 〈cop 3636 class class class wbr 4044 ◡ccnv 4674 “ cima 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 |
| This theorem is referenced by: epini 5053 iniseg 5054 dfco2a 5183 isoini 5887 pilem3 15255 |
| Copyright terms: Public domain | W3C validator |