![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eliniseg | GIF version |
Description: Membership in an initial segment. The idiom (◡𝐴 “ {𝐵}), meaning {𝑥 ∣ 𝑥𝐴𝐵}, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
eliniseg.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eliniseg | ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliniseg.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | elimasng 4997 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ ◡𝐴)) | |
3 | df-br 4005 | . . . 4 ⊢ (𝐵◡𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ ◡𝐴) | |
4 | 2, 3 | bitr4di 198 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶)) |
5 | brcnvg 4809 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐵◡𝐴𝐶 ↔ 𝐶𝐴𝐵)) | |
6 | 4, 5 | bitrd 188 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
7 | 1, 6 | mpan2 425 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 Vcvv 2738 {csn 3593 ⟨cop 3596 class class class wbr 4004 ◡ccnv 4626 “ cima 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-xp 4633 df-cnv 4635 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 |
This theorem is referenced by: epini 5000 iniseg 5001 dfco2a 5130 isoini 5819 pilem3 14207 |
Copyright terms: Public domain | W3C validator |