| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfoprab3 | GIF version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| dfoprab3.1 | ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dfoprab3 | ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab3s 6289 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} | |
| 2 | vex 2776 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 3 | 1stexg 6266 | . . . . . 6 ⊢ (𝑤 ∈ V → (1st ‘𝑤) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1st ‘𝑤) ∈ V |
| 5 | 2ndexg 6267 | . . . . . 6 ⊢ (𝑤 ∈ V → (2nd ‘𝑤) ∈ V) | |
| 6 | 2, 5 | ax-mp 5 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V |
| 7 | eqcom 2208 | . . . . . . . . . 10 ⊢ (𝑥 = (1st ‘𝑤) ↔ (1st ‘𝑤) = 𝑥) | |
| 8 | eqcom 2208 | . . . . . . . . . 10 ⊢ (𝑦 = (2nd ‘𝑤) ↔ (2nd ‘𝑤) = 𝑦) | |
| 9 | 7, 8 | anbi12i 460 | . . . . . . . . 9 ⊢ ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) ↔ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) |
| 10 | eqopi 6271 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (V × V) ∧ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) → 𝑤 = 〈𝑥, 𝑦〉) | |
| 11 | 9, 10 | sylan2b 287 | . . . . . . . 8 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → 𝑤 = 〈𝑥, 𝑦〉) |
| 12 | dfoprab3.1 | . . . . . . . 8 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
| 13 | 11, 12 | syl 14 | . . . . . . 7 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜑 ↔ 𝜓)) |
| 14 | 13 | bicomd 141 | . . . . . 6 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜓 ↔ 𝜑)) |
| 15 | 14 | ex 115 | . . . . 5 ⊢ (𝑤 ∈ (V × V) → ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) → (𝜓 ↔ 𝜑))) |
| 16 | 4, 6, 15 | sbc2iedv 3075 | . . . 4 ⊢ (𝑤 ∈ (V × V) → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓 ↔ 𝜑)) |
| 17 | 16 | pm5.32i 454 | . . 3 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑)) |
| 18 | 17 | opabbii 4119 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} |
| 19 | 1, 18 | eqtr2i 2228 | 1 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 [wsbc 3002 〈cop 3641 {copab 4112 × cxp 4681 ‘cfv 5280 {coprab 5958 1st c1st 6237 2nd c2nd 6238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fo 5286 df-fv 5288 df-oprab 5961 df-1st 6239 df-2nd 6240 |
| This theorem is referenced by: dfoprab4 6291 df1st2 6318 df2nd2 6319 |
| Copyright terms: Public domain | W3C validator |