ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab3 GIF version

Theorem dfoprab3 6258
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
dfoprab3.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab3 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑤   𝑥,𝑧,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab3
StepHypRef Expression
1 dfoprab3s 6257 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓)}
2 vex 2766 . . . . . 6 𝑤 ∈ V
3 1stexg 6234 . . . . . 6 (𝑤 ∈ V → (1st𝑤) ∈ V)
42, 3ax-mp 5 . . . . 5 (1st𝑤) ∈ V
5 2ndexg 6235 . . . . . 6 (𝑤 ∈ V → (2nd𝑤) ∈ V)
62, 5ax-mp 5 . . . . 5 (2nd𝑤) ∈ V
7 eqcom 2198 . . . . . . . . . 10 (𝑥 = (1st𝑤) ↔ (1st𝑤) = 𝑥)
8 eqcom 2198 . . . . . . . . . 10 (𝑦 = (2nd𝑤) ↔ (2nd𝑤) = 𝑦)
97, 8anbi12i 460 . . . . . . . . 9 ((𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤)) ↔ ((1st𝑤) = 𝑥 ∧ (2nd𝑤) = 𝑦))
10 eqopi 6239 . . . . . . . . 9 ((𝑤 ∈ (V × V) ∧ ((1st𝑤) = 𝑥 ∧ (2nd𝑤) = 𝑦)) → 𝑤 = ⟨𝑥, 𝑦⟩)
119, 10sylan2b 287 . . . . . . . 8 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → 𝑤 = ⟨𝑥, 𝑦⟩)
12 dfoprab3.1 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
1311, 12syl 14 . . . . . . 7 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → (𝜑𝜓))
1413bicomd 141 . . . . . 6 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → (𝜓𝜑))
1514ex 115 . . . . 5 (𝑤 ∈ (V × V) → ((𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤)) → (𝜓𝜑)))
164, 6, 15sbc2iedv 3062 . . . 4 (𝑤 ∈ (V × V) → ([(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓𝜑))
1716pm5.32i 454 . . 3 ((𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑))
1817opabbii 4101 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)}
191, 18eqtr2i 2218 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  [wsbc 2989  cop 3626  {copab 4094   × cxp 4662  cfv 5259  {coprab 5926  1st c1st 6205  2nd c2nd 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-oprab 5929  df-1st 6207  df-2nd 6208
This theorem is referenced by:  dfoprab4  6259  df1st2  6286  df2nd2  6287
  Copyright terms: Public domain W3C validator