![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfoprab3 | GIF version |
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
dfoprab3.1 | ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dfoprab3 | ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab3s 6193 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} | |
2 | vex 2742 | . . . . . 6 ⊢ 𝑤 ∈ V | |
3 | 1stexg 6170 | . . . . . 6 ⊢ (𝑤 ∈ V → (1st ‘𝑤) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1st ‘𝑤) ∈ V |
5 | 2ndexg 6171 | . . . . . 6 ⊢ (𝑤 ∈ V → (2nd ‘𝑤) ∈ V) | |
6 | 2, 5 | ax-mp 5 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V |
7 | eqcom 2179 | . . . . . . . . . 10 ⊢ (𝑥 = (1st ‘𝑤) ↔ (1st ‘𝑤) = 𝑥) | |
8 | eqcom 2179 | . . . . . . . . . 10 ⊢ (𝑦 = (2nd ‘𝑤) ↔ (2nd ‘𝑤) = 𝑦) | |
9 | 7, 8 | anbi12i 460 | . . . . . . . . 9 ⊢ ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) ↔ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) |
10 | eqopi 6175 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (V × V) ∧ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) → 𝑤 = ⟨𝑥, 𝑦⟩) | |
11 | 9, 10 | sylan2b 287 | . . . . . . . 8 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → 𝑤 = ⟨𝑥, 𝑦⟩) |
12 | dfoprab3.1 | . . . . . . . 8 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) | |
13 | 11, 12 | syl 14 | . . . . . . 7 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜑 ↔ 𝜓)) |
14 | 13 | bicomd 141 | . . . . . 6 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜓 ↔ 𝜑)) |
15 | 14 | ex 115 | . . . . 5 ⊢ (𝑤 ∈ (V × V) → ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) → (𝜓 ↔ 𝜑))) |
16 | 4, 6, 15 | sbc2iedv 3037 | . . . 4 ⊢ (𝑤 ∈ (V × V) → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓 ↔ 𝜑)) |
17 | 16 | pm5.32i 454 | . . 3 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑)) |
18 | 17 | opabbii 4072 | . 2 ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} |
19 | 1, 18 | eqtr2i 2199 | 1 ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2739 [wsbc 2964 ⟨cop 3597 {copab 4065 × cxp 4626 ‘cfv 5218 {coprab 5878 1st c1st 6141 2nd c2nd 6142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 df-oprab 5881 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: dfoprab4 6195 df1st2 6222 df2nd2 6223 |
Copyright terms: Public domain | W3C validator |