| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfoprab3 | GIF version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| dfoprab3.1 | ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| dfoprab3 | ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfoprab3s 6248 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} | |
| 2 | vex 2766 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 3 | 1stexg 6225 | . . . . . 6 ⊢ (𝑤 ∈ V → (1st ‘𝑤) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (1st ‘𝑤) ∈ V | 
| 5 | 2ndexg 6226 | . . . . . 6 ⊢ (𝑤 ∈ V → (2nd ‘𝑤) ∈ V) | |
| 6 | 2, 5 | ax-mp 5 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V | 
| 7 | eqcom 2198 | . . . . . . . . . 10 ⊢ (𝑥 = (1st ‘𝑤) ↔ (1st ‘𝑤) = 𝑥) | |
| 8 | eqcom 2198 | . . . . . . . . . 10 ⊢ (𝑦 = (2nd ‘𝑤) ↔ (2nd ‘𝑤) = 𝑦) | |
| 9 | 7, 8 | anbi12i 460 | . . . . . . . . 9 ⊢ ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) ↔ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) | 
| 10 | eqopi 6230 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (V × V) ∧ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) → 𝑤 = 〈𝑥, 𝑦〉) | |
| 11 | 9, 10 | sylan2b 287 | . . . . . . . 8 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → 𝑤 = 〈𝑥, 𝑦〉) | 
| 12 | dfoprab3.1 | . . . . . . . 8 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
| 13 | 11, 12 | syl 14 | . . . . . . 7 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜑 ↔ 𝜓)) | 
| 14 | 13 | bicomd 141 | . . . . . 6 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜓 ↔ 𝜑)) | 
| 15 | 14 | ex 115 | . . . . 5 ⊢ (𝑤 ∈ (V × V) → ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) → (𝜓 ↔ 𝜑))) | 
| 16 | 4, 6, 15 | sbc2iedv 3062 | . . . 4 ⊢ (𝑤 ∈ (V × V) → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓 ↔ 𝜑)) | 
| 17 | 16 | pm5.32i 454 | . . 3 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑)) | 
| 18 | 17 | opabbii 4100 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} | 
| 19 | 1, 18 | eqtr2i 2218 | 1 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 [wsbc 2989 〈cop 3625 {copab 4093 × cxp 4661 ‘cfv 5258 {coprab 5923 1st c1st 6196 2nd c2nd 6197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-oprab 5926 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: dfoprab4 6250 df1st2 6277 df2nd2 6278 | 
| Copyright terms: Public domain | W3C validator |