| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fcoi1 | GIF version | ||
| Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi1 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5419 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | df-fn 5271 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 3 | eqimss 3246 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | cnvi 5084 | . . . . . . . . . 10 ⊢ ◡ I = I | |
| 5 | 4 | reseq1i 4952 | . . . . . . . . 9 ⊢ (◡ I ↾ 𝐴) = ( I ↾ 𝐴) |
| 6 | 5 | cnveqi 4851 | . . . . . . . 8 ⊢ ◡(◡ I ↾ 𝐴) = ◡( I ↾ 𝐴) |
| 7 | cnvresid 5342 | . . . . . . . 8 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 8 | 6, 7 | eqtr2i 2226 | . . . . . . 7 ⊢ ( I ↾ 𝐴) = ◡(◡ I ↾ 𝐴) |
| 9 | 8 | coeq2i 4836 | . . . . . 6 ⊢ (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ ◡(◡ I ↾ 𝐴)) |
| 10 | cores2 5192 | . . . . . 6 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ◡(◡ I ↾ 𝐴)) = (𝐹 ∘ I )) | |
| 11 | 9, 10 | eqtrid 2249 | . . . . 5 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
| 12 | 3, 11 | syl 14 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
| 13 | funrel 5285 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 14 | coi1 5195 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
| 15 | 13, 14 | syl 14 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
| 16 | 12, 15 | sylan9eqr 2259 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 17 | 2, 16 | sylbi 121 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 18 | 1, 17 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ⊆ wss 3165 I cid 4333 ◡ccnv 4672 dom cdm 4673 ↾ cres 4675 ∘ ccom 4677 Rel wrel 4678 Fun wfun 5262 Fn wfn 5263 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-fun 5270 df-fn 5271 df-f 5272 |
| This theorem is referenced by: fcof1o 5848 mapen 6925 hashfacen 10962 |
| Copyright terms: Public domain | W3C validator |