ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresi GIF version

Theorem fnresi 5117
Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
fnresi ( I ↾ 𝐴) Fn 𝐴

Proof of Theorem fnresi
StepHypRef Expression
1 funi 5032 . . 3 Fun I
2 funres 5041 . . 3 (Fun I → Fun ( I ↾ 𝐴))
31, 2ax-mp 7 . 2 Fun ( I ↾ 𝐴)
4 dmresi 4754 . 2 dom ( I ↾ 𝐴) = 𝐴
5 df-fn 5005 . 2 (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴))
63, 4, 5mpbir2an 888 1 ( I ↾ 𝐴) Fn 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1289   I cid 4106  dom cdm 4428  cres 4430  Fun wfun 4996   Fn wfn 4997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-res 4440  df-fun 5004  df-fn 5005
This theorem is referenced by:  f1oi  5275  iordsmo  6044
  Copyright terms: Public domain W3C validator