![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnresi | GIF version |
Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 5267 | . . 3 ⊢ Fun I | |
2 | funres 5276 | . . 3 ⊢ (Fun I → Fun ( I ↾ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun ( I ↾ 𝐴) |
4 | dmresi 4980 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
5 | df-fn 5238 | . 2 ⊢ (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴)) | |
6 | 3, 4, 5 | mpbir2an 944 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 I cid 4306 dom cdm 4644 ↾ cres 4646 Fun wfun 5229 Fn wfn 5230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-res 4656 df-fun 5237 df-fn 5238 |
This theorem is referenced by: f1oi 5518 iordsmo 6323 omp1eomlem 7124 ctm 7139 |
Copyright terms: Public domain | W3C validator |