| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnresi | GIF version | ||
| Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 5290 | . . 3 ⊢ Fun I | |
| 2 | funres 5299 | . . 3 ⊢ (Fun I → Fun ( I ↾ 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun ( I ↾ 𝐴) |
| 4 | dmresi 5001 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
| 5 | df-fn 5261 | . 2 ⊢ (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴)) | |
| 6 | 3, 4, 5 | mpbir2an 944 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 I cid 4323 dom cdm 4663 ↾ cres 4665 Fun wfun 5252 Fn wfn 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-fun 5260 df-fn 5261 |
| This theorem is referenced by: f1oi 5542 iordsmo 6355 omp1eomlem 7160 ctm 7175 xnn0nnen 10529 |
| Copyright terms: Public domain | W3C validator |