ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresi GIF version

Theorem fnresi 5403
Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
fnresi ( I ↾ 𝐴) Fn 𝐴

Proof of Theorem fnresi
StepHypRef Expression
1 funi 5312 . . 3 Fun I
2 funres 5321 . . 3 (Fun I → Fun ( I ↾ 𝐴))
31, 2ax-mp 5 . 2 Fun ( I ↾ 𝐴)
4 dmresi 5023 . 2 dom ( I ↾ 𝐴) = 𝐴
5 df-fn 5283 . 2 (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴))
63, 4, 5mpbir2an 945 1 ( I ↾ 𝐴) Fn 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373   I cid 4343  dom cdm 4683  cres 4685  Fun wfun 5274   Fn wfn 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-res 4695  df-fun 5282  df-fn 5283
This theorem is referenced by:  f1oi  5573  iordsmo  6396  omp1eomlem  7211  ctm  7226  xnn0nnen  10604
  Copyright terms: Public domain W3C validator