ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresi GIF version

Theorem fnresi 5371
Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
fnresi ( I ↾ 𝐴) Fn 𝐴

Proof of Theorem fnresi
StepHypRef Expression
1 funi 5286 . . 3 Fun I
2 funres 5295 . . 3 (Fun I → Fun ( I ↾ 𝐴))
31, 2ax-mp 5 . 2 Fun ( I ↾ 𝐴)
4 dmresi 4997 . 2 dom ( I ↾ 𝐴) = 𝐴
5 df-fn 5257 . 2 (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴))
63, 4, 5mpbir2an 944 1 ( I ↾ 𝐴) Fn 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364   I cid 4319  dom cdm 4659  cres 4661  Fun wfun 5248   Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-fun 5256  df-fn 5257
This theorem is referenced by:  f1oi  5538  iordsmo  6350  omp1eomlem  7153  ctm  7168  xnn0nnen  10508
  Copyright terms: Public domain W3C validator