| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnresi | GIF version | ||
| Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 5302 | . . 3 ⊢ Fun I | |
| 2 | funres 5311 | . . 3 ⊢ (Fun I → Fun ( I ↾ 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun ( I ↾ 𝐴) |
| 4 | dmresi 5013 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
| 5 | df-fn 5273 | . 2 ⊢ (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴)) | |
| 6 | 3, 4, 5 | mpbir2an 944 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 I cid 4334 dom cdm 4674 ↾ cres 4676 Fun wfun 5264 Fn wfn 5265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-res 4686 df-fun 5272 df-fn 5273 |
| This theorem is referenced by: f1oi 5559 iordsmo 6382 omp1eomlem 7195 ctm 7210 xnn0nnen 10580 |
| Copyright terms: Public domain | W3C validator |