ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresi GIF version

Theorem fnresi 5440
Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
fnresi ( I ↾ 𝐴) Fn 𝐴

Proof of Theorem fnresi
StepHypRef Expression
1 funi 5349 . . 3 Fun I
2 funres 5358 . . 3 (Fun I → Fun ( I ↾ 𝐴))
31, 2ax-mp 5 . 2 Fun ( I ↾ 𝐴)
4 dmresi 5059 . 2 dom ( I ↾ 𝐴) = 𝐴
5 df-fn 5320 . 2 (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴))
63, 4, 5mpbir2an 948 1 ( I ↾ 𝐴) Fn 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1395   I cid 4378  dom cdm 4718  cres 4720  Fun wfun 5311   Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-fun 5319  df-fn 5320
This theorem is referenced by:  f1oi  5610  iordsmo  6441  omp1eomlem  7257  ctm  7272  xnn0nnen  10654
  Copyright terms: Public domain W3C validator