ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtopon GIF version

Theorem funtopon 13443
Description: The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
funtopon Fun TopOn

Proof of Theorem funtopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topon 13442 . 2 TopOn = (𝑦 ∈ V ↦ {𝑥 ∈ Top ∣ 𝑦 = 𝑥})
21funmpt2 5255 1 Fun TopOn
Colors of variables: wff set class
Syntax hints:   = wceq 1353  {crab 2459  Vcvv 2737   cuni 3809  Fun wfun 5210  Topctop 13428  TopOnctopon 13441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-fun 5218  df-topon 13442
This theorem is referenced by:  istopon  13444  fntopon  13455
  Copyright terms: Public domain W3C validator