Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funmpt2 | GIF version |
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 5226 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 5209 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ↦ cmpt 4043 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: fvmptss2 5561 mptrcl 5568 elfvmptrab1 5580 frectfr 6368 frecsuclem 6374 caseinj 7054 caseinl 7056 caseinr 7057 omp1eomlem 7059 djudoml 7175 djudomr 7176 fihashf1rn 10702 funtopon 12660 eltg4i 12705 eltg3 12707 tg1 12709 tg2 12710 tgclb 12715 lmrcl 12841 exmidsbthrlem 13911 |
Copyright terms: Public domain | W3C validator |