| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funmpt2 | GIF version | ||
| Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| funmpt2 | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 5356 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | funeqi 5339 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Fun 𝐹 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ↦ cmpt 4145 Fun wfun 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-fun 5320 |
| This theorem is referenced by: fvmptss2 5711 mptrcl 5719 elfvmptrab1 5731 relmptopab 6213 frectfr 6552 frecsuclem 6558 caseinj 7264 caseinl 7266 caseinr 7267 omp1eomlem 7269 djudoml 7409 djudomr 7410 fihashf1rn 11018 4sqlemffi 12927 lidlmex 14447 funtopon 14694 eltg4i 14737 eltg3 14739 tg1 14741 tg2 14742 tgclb 14747 lmrcl 14874 1vgrex 15829 exmidsbthrlem 16420 |
| Copyright terms: Public domain | W3C validator |