![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funmpt2 | GIF version |
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 5292 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 5275 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 146 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ↦ cmpt 4090 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-fun 5256 |
This theorem is referenced by: fvmptss2 5632 mptrcl 5640 elfvmptrab1 5652 frectfr 6453 frecsuclem 6459 caseinj 7148 caseinl 7150 caseinr 7151 omp1eomlem 7153 djudoml 7279 djudomr 7280 fihashf1rn 10859 4sqlemffi 12534 lidlmex 13971 funtopon 14180 eltg4i 14223 eltg3 14225 tg1 14227 tg2 14228 tgclb 14233 lmrcl 14359 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |