| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodxp | GIF version | ||
| Description: Combine two products into a single product over the cartesian product. (Contributed by Scott Fenton, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| fprodxp.1 | ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) |
| fprodxp.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodxp.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fprodxp.4 | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fprodxp | ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑧 ∈ (𝐴 × 𝐵)𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodxp.1 | . . 3 ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) | |
| 2 | fprodxp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 3 | fprodxp.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) |
| 5 | fprodxp.4 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) | |
| 6 | 1, 2, 4, 5 | fprod2d 12004 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) |
| 7 | iunxpconst 4742 | . . 3 ⊢ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) = (𝐴 × 𝐵) | |
| 8 | 7 | prodeq1i 11942 | . 2 ⊢ ∏𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷 = ∏𝑧 ∈ (𝐴 × 𝐵)𝐷 |
| 9 | 6, 8 | eqtrdi 2255 | 1 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑧 ∈ (𝐴 × 𝐵)𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3637 〈cop 3640 ∪ ciun 3932 × cxp 4680 Fincfn 6839 ℂcc 7938 ∏cprod 11931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-disj 4027 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-frec 6489 df-1o 6514 df-oadd 6518 df-er 6632 df-en 6840 df-dom 6841 df-fin 6842 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-fz 10146 df-fzo 10280 df-seqfrec 10610 df-exp 10701 df-ihash 10938 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-clim 11660 df-proddc 11932 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |