Theorem List for Intuitionistic Logic Explorer - 9901-10000   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | z2ge 9901* | 
There exists an integer greater than or equal to any two others.
       (Contributed by NM, 28-Aug-2005.)
 | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) | 
|   | 
| Theorem | xnegeq 9902 | 
Equality of two extended numbers with -𝑒 in front of them.
     (Contributed by FL, 26-Dec-2011.)  (Proof shortened by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | 
|   | 
| Theorem | xnegpnf 9903 | 
Minus +∞.  Remark of [BourbakiTop1] p.  IV.15.  (Contributed by FL,
     26-Dec-2011.)
 | 
| ⊢ -𝑒+∞ =
 -∞ | 
|   | 
| Theorem | xnegmnf 9904 | 
Minus -∞.  Remark of [BourbakiTop1] p.  IV.15.  (Contributed by FL,
     26-Dec-2011.)  (Revised by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ -𝑒-∞ =
 +∞ | 
|   | 
| Theorem | rexneg 9905 | 
Minus a real number.  Remark [BourbakiTop1] p.  IV.15.  (Contributed by
     FL, 26-Dec-2011.)  (Proof shortened by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ →
 -𝑒𝐴 =
 -𝐴) | 
|   | 
| Theorem | xneg0 9906 | 
The negative of zero.  (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ -𝑒0 = 0 | 
|   | 
| Theorem | xnegcl 9907 | 
Closure of extended real negative.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* →
 -𝑒𝐴
 ∈ ℝ*) | 
|   | 
| Theorem | xnegneg 9908 | 
Extended real version of negneg 8276.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* →
 -𝑒-𝑒𝐴 = 𝐴) | 
|   | 
| Theorem | xneg11 9909 | 
Extended real version of neg11 8277.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (-𝑒𝐴 = -𝑒𝐵 ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | xltnegi 9910 | 
Forward direction of xltneg 9911.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐴 < 𝐵) →
 -𝑒𝐵
 < -𝑒𝐴) | 
|   | 
| Theorem | xltneg 9911 | 
Extended real version of ltneg 8489.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 < 𝐵 ↔
 -𝑒𝐵
 < -𝑒𝐴)) | 
|   | 
| Theorem | xleneg 9912 | 
Extended real version of leneg 8492.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 ≤ 𝐵 ↔
 -𝑒𝐵
 ≤ -𝑒𝐴)) | 
|   | 
| Theorem | xlt0neg1 9913 | 
Extended real version of lt0neg1 8495.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 <
 -𝑒𝐴)) | 
|   | 
| Theorem | xlt0neg2 9914 | 
Extended real version of lt0neg2 8496.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (0 <
 𝐴 ↔
 -𝑒𝐴
 < 0)) | 
|   | 
| Theorem | xle0neg1 9915 | 
Extended real version of le0neg1 8497.  (Contributed by Mario Carneiro,
     9-Sep-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤
 -𝑒𝐴)) | 
|   | 
| Theorem | xle0neg2 9916 | 
Extended real version of le0neg2 8498.  (Contributed by Mario Carneiro,
     9-Sep-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (0 ≤
 𝐴 ↔
 -𝑒𝐴
 ≤ 0)) | 
|   | 
| Theorem | xrpnfdc 9917 | 
An extended real is or is not plus infinity.  (Contributed by Jim Kingdon,
     13-Apr-2023.)
 | 
| ⊢ (𝐴 ∈ ℝ* →
 DECID 𝐴 =
 +∞) | 
|   | 
| Theorem | xrmnfdc 9918 | 
An extended real is or is not minus infinity.  (Contributed by Jim
     Kingdon, 13-Apr-2023.)
 | 
| ⊢ (𝐴 ∈ ℝ* →
 DECID 𝐴 =
 -∞) | 
|   | 
| Theorem | xaddf 9919 | 
The extended real addition operation is closed in extended reals.
       (Contributed by Mario Carneiro, 21-Aug-2015.)
 | 
| ⊢  +𝑒 :(ℝ*
 × ℝ*)⟶ℝ* | 
|   | 
| Theorem | xaddval 9920 | 
Value of the extended real addition operation.  (Contributed by Mario
       Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴
 +𝑒 𝐵) =
 if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞),
 if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
 if(𝐵 = +∞, +∞,
 if(𝐵 = -∞, -∞,
 (𝐴 + 𝐵)))))) | 
|   | 
| Theorem | xaddpnf1 9921 | 
Addition of positive infinity on the right.  (Contributed by Mario
     Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒
 +∞) = +∞) | 
|   | 
| Theorem | xaddpnf2 9922 | 
Addition of positive infinity on the left.  (Contributed by Mario
     Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) →
 (+∞ +𝑒 𝐴) = +∞) | 
|   | 
| Theorem | xaddmnf1 9923 | 
Addition of negative infinity on the right.  (Contributed by Mario
     Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒
 -∞) = -∞) | 
|   | 
| Theorem | xaddmnf2 9924 | 
Addition of negative infinity on the left.  (Contributed by Mario
     Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) →
 (-∞ +𝑒 𝐴) = -∞) | 
|   | 
| Theorem | pnfaddmnf 9925 | 
Addition of positive and negative infinity.  This is often taken to be a
     "null" value or out of the domain, but we define it (somewhat
arbitrarily)
     to be zero so that the resulting function is total, which simplifies
     proofs.  (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ (+∞ +𝑒 -∞) =
 0 | 
|   | 
| Theorem | mnfaddpnf 9926 | 
Addition of negative and positive infinity.  This is often taken to be a
     "null" value or out of the domain, but we define it (somewhat
arbitrarily)
     to be zero so that the resulting function is total, which simplifies
     proofs.  (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ (-∞ +𝑒 +∞) =
 0 | 
|   | 
| Theorem | rexadd 9927 | 
The extended real addition operation when both arguments are real.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | 
|   | 
| Theorem | rexsub 9928 | 
Extended real subtraction when both arguments are real.  (Contributed by
     Mario Carneiro, 23-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒
 -𝑒𝐵) =
 (𝐴 − 𝐵)) | 
|   | 
| Theorem | rexaddd 9929 | 
The extended real addition operation when both arguments are real.
       Deduction version of rexadd 9927.  (Contributed by Glauco Siliprandi,
       24-Dec-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | 
|   | 
| Theorem | xnegcld 9930 | 
Closure of extended real negative.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈
 ℝ*)    ⇒   ⊢ (𝜑 → -𝑒𝐴 ∈
 ℝ*) | 
|   | 
| Theorem | xrex 9931 | 
The set of extended reals exists.  (Contributed by NM, 24-Dec-2006.)
 | 
| ⊢ ℝ* ∈
 V | 
|   | 
| Theorem | xaddnemnf 9932 | 
Closure of extended real addition in the subset ℝ* / {-∞}.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*
 ∧ 𝐵 ≠ -∞))
 → (𝐴
 +𝑒 𝐵)
 ≠ -∞) | 
|   | 
| Theorem | xaddnepnf 9933 | 
Closure of extended real addition in the subset ℝ* / {+∞}.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*
 ∧ 𝐵 ≠ +∞))
 → (𝐴
 +𝑒 𝐵)
 ≠ +∞) | 
|   | 
| Theorem | xnegid 9934 | 
Extended real version of negid 8273.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒
 -𝑒𝐴) =
 0) | 
|   | 
| Theorem | xaddcl 9935 | 
The extended real addition operation is closed in extended reals.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴
 +𝑒 𝐵)
 ∈ ℝ*) | 
|   | 
| Theorem | xaddcom 9936 | 
The extended real addition operation is commutative.  (Contributed by NM,
     26-Dec-2011.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴
 +𝑒 𝐵) =
 (𝐵 +𝑒
 𝐴)) | 
|   | 
| Theorem | xaddid1 9937 | 
Extended real version of addrid 8164.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) =
 𝐴) | 
|   | 
| Theorem | xaddid2 9938 | 
Extended real version of addlid 8165.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (0
 +𝑒 𝐴) =
 𝐴) | 
|   | 
| Theorem | xaddid1d 9939 | 
0 is a right identity for extended real addition. 
(Contributed by
       Glauco Siliprandi, 17-Aug-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈
 ℝ*)    ⇒   ⊢ (𝜑 → (𝐴 +𝑒 0) = 𝐴) | 
|   | 
| Theorem | xnn0lenn0nn0 9940 | 
An extended nonnegative integer which is less than or equal to a
     nonnegative integer is a nonnegative integer.  (Contributed by AV,
     24-Nov-2021.)
 | 
| ⊢ ((𝑀 ∈ ℕ0*
 ∧ 𝑁 ∈
 ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈
 ℕ0) | 
|   | 
| Theorem | xnn0le2is012 9941 | 
An extended nonnegative integer which is less than or equal to 2 is either
     0 or 1 or 2.  (Contributed by AV, 24-Nov-2021.)
 | 
| ⊢ ((𝑁 ∈ ℕ0*
 ∧ 𝑁 ≤ 2) →
 (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | 
|   | 
| Theorem | xnn0xadd0 9942 | 
The sum of two extended nonnegative integers is 0 iff
each of the two
     extended nonnegative integers is 0.  (Contributed
by AV,
     14-Dec-2020.)
 | 
| ⊢ ((𝐴 ∈ ℕ0*
 ∧ 𝐵 ∈
 ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | 
|   | 
| Theorem | xnegdi 9943 | 
Extended real version of negdi 8283.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒
 -𝑒𝐵)) | 
|   | 
| Theorem | xaddass 9944 | 
Associativity of extended real addition.  The correct condition here is
     "it is not the case that both +∞ and
-∞ appear as one of
     𝐴,
𝐵, 𝐶, i.e. ¬
{+∞, -∞} ⊆ {𝐴, 𝐵, 𝐶}", but this
     condition is difficult to work with, so we break the theorem into two
     parts: this one, where -∞ is not present in
𝐴, 𝐵, 𝐶, and
     xaddass2 9945, where +∞ is
not present.  (Contributed by Mario
     Carneiro, 20-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*
 ∧ 𝐵 ≠ -∞)
 ∧ (𝐶 ∈
 ℝ* ∧ 𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | 
|   | 
| Theorem | xaddass2 9945 | 
Associativity of extended real addition.  See xaddass 9944 for notes on the
     hypotheses.  (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*
 ∧ 𝐵 ≠ +∞)
 ∧ (𝐶 ∈
 ℝ* ∧ 𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | 
|   | 
| Theorem | xpncan 9946 | 
Extended real version of pncan 8232.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒
 -𝑒𝐵) =
 𝐴) | 
|   | 
| Theorem | xnpcan 9947 | 
Extended real version of npcan 8235.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒
 -𝑒𝐵)
 +𝑒 𝐵) =
 𝐴) | 
|   | 
| Theorem | xleadd1a 9948 | 
Extended real version of leadd1 8457; note that the converse implication is
     not true, unlike the real version (for example 0 <
1 but
     (1 +𝑒 +∞) ≤ (0
+𝑒 +∞)).  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | 
|   | 
| Theorem | xleadd2a 9949 | 
Commuted form of xleadd1a 9948.  (Contributed by Mario Carneiro,
     20-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) | 
|   | 
| Theorem | xleadd1 9950 | 
Weakened version of xleadd1a 9948 under which the reverse implication is
     true.  (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈ ℝ)
 → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) | 
|   | 
| Theorem | xltadd1 9951 | 
Extended real version of ltadd1 8456.  (Contributed by Mario Carneiro,
     23-Aug-2015.)  (Revised by Jim Kingdon, 16-Apr-2023.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈ ℝ)
 → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))) | 
|   | 
| Theorem | xltadd2 9952 | 
Extended real version of ltadd2 8446.  (Contributed by Mario Carneiro,
     23-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈ ℝ)
 → (𝐴 < 𝐵 ↔ (𝐶 +𝑒 𝐴) < (𝐶 +𝑒 𝐵))) | 
|   | 
| Theorem | xaddge0 9953 | 
The sum of nonnegative extended reals is nonnegative.  (Contributed by
     Mario Carneiro, 21-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 ∧ (0 ≤ 𝐴 ∧ 0
 ≤ 𝐵)) → 0 ≤
 (𝐴 +𝑒
 𝐵)) | 
|   | 
| Theorem | xle2add 9954 | 
Extended real version of le2add 8471.  (Contributed by Mario Carneiro,
     23-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 ∧ (𝐶 ∈
 ℝ* ∧ 𝐷 ∈ ℝ*)) →
 ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | 
|   | 
| Theorem | xlt2add 9955 | 
Extended real version of lt2add 8472.  Note that ltleadd 8473, which has
     weaker assumptions, is not true for the extended reals (since
     0 + +∞ < 1 + +∞ fails). 
(Contributed by Mario Carneiro,
     23-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 ∧ (𝐶 ∈
 ℝ* ∧ 𝐷 ∈ ℝ*)) →
 ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))) | 
|   | 
| Theorem | xsubge0 9956 | 
Extended real version of subge0 8502.  (Contributed by Mario Carneiro,
     24-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (0 ≤ (𝐴
 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) | 
|   | 
| Theorem | xposdif 9957 | 
Extended real version of posdif 8482.  (Contributed by Mario Carneiro,
     24-Aug-2015.)  (Revised by Jim Kingdon, 17-Apr-2023.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
 -𝑒𝐴))) | 
|   | 
| Theorem | xlesubadd 9958 | 
Under certain conditions, the conclusion of lesubadd 8461 is true even in the
     extended reals.  (Contributed by Mario Carneiro, 4-Sep-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒
 -𝑒𝐵)
 ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵))) | 
|   | 
| Theorem | xaddcld 9959 | 
The extended real addition operation is closed in extended reals.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ*)    ⇒   ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈
 ℝ*) | 
|   | 
| Theorem | xadd4d 9960 | 
Rearrangement of 4 terms in a sum for extended addition, analogous to
       add4d 8195.  (Contributed by Alexander van der Vekens,
21-Dec-2017.)
 | 
| ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞))    &   ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞))    &   ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞))    &   ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠
 -∞))    ⇒   ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | 
|   | 
| Theorem | xnn0add4d 9961 | 
Rearrangement of 4 terms in a sum for extended addition of extended
       nonnegative integers, analogous to xadd4d 9960.  (Contributed by AV,
       12-Dec-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈
 ℕ0*)   
 &   ⊢ (𝜑 → 𝐵 ∈
 ℕ0*)   
 &   ⊢ (𝜑 → 𝐶 ∈
 ℕ0*)   
 &   ⊢ (𝜑 → 𝐷 ∈
 ℕ0*)    ⇒   ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | 
|   | 
| Theorem | xleaddadd 9962 | 
Cancelling a factor of two in ≤ (expressed as
addition rather than
       as a factor to avoid extended real multiplication).  (Contributed by Jim
       Kingdon, 18-Apr-2023.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))) | 
|   | 
| 4.5.3  Real number intervals
 | 
|   | 
| Syntax | cioo 9963 | 
Extend class notation with the set of open intervals of extended reals.
 | 
| class (,) | 
|   | 
| Syntax | cioc 9964 | 
Extend class notation with the set of open-below, closed-above intervals
     of extended reals.
 | 
| class (,] | 
|   | 
| Syntax | cico 9965 | 
Extend class notation with the set of closed-below, open-above intervals
     of extended reals.
 | 
| class [,) | 
|   | 
| Syntax | cicc 9966 | 
Extend class notation with the set of closed intervals of extended
     reals.
 | 
| class [,] | 
|   | 
| Definition | df-ioo 9967* | 
Define the set of open intervals of extended reals.  (Contributed by NM,
       24-Dec-2006.)
 | 
| ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | 
|   | 
| Definition | df-ioc 9968* | 
Define the set of open-below, closed-above intervals of extended reals.
       (Contributed by NM, 24-Dec-2006.)
 | 
| ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | 
|   | 
| Definition | df-ico 9969* | 
Define the set of closed-below, open-above intervals of extended reals.
       (Contributed by NM, 24-Dec-2006.)
 | 
| ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | 
|   | 
| Definition | df-icc 9970* | 
Define the set of closed intervals of extended reals.  (Contributed by
       NM, 24-Dec-2006.)
 | 
| ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | 
|   | 
| Theorem | ixxval 9971* | 
Value of the interval function.  (Contributed by Mario Carneiro,
       3-Nov-2013.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    ⇒   ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) | 
|   | 
| Theorem | elixx1 9972* | 
Membership in an interval of extended reals.  (Contributed by Mario
       Carneiro, 3-Nov-2013.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    ⇒   ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | 
|   | 
| Theorem | ixxf 9973* | 
The set of intervals of extended reals maps to subsets of extended
       reals.  (Contributed by FL, 14-Jun-2007.)  (Revised by Mario Carneiro,
       16-Nov-2013.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    ⇒   ⊢ 𝑂:(ℝ* ×
 ℝ*)⟶𝒫 ℝ* | 
|   | 
| Theorem | ixxex 9974* | 
The set of intervals of extended reals exists.  (Contributed by Mario
       Carneiro, 3-Nov-2013.)  (Revised by Mario Carneiro, 17-Nov-2014.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    ⇒   ⊢ 𝑂 ∈ V | 
|   | 
| Theorem | ixxssxr 9975* | 
The set of intervals of extended reals maps to subsets of extended
         reals.  (Contributed by Mario Carneiro, 4-Jul-2014.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    ⇒   ⊢ (𝐴𝑂𝐵) ⊆
 ℝ* | 
|   | 
| Theorem | elixx3g 9976* | 
Membership in a set of open intervals of extended reals.  We use the
       fact that an operation's value is empty outside of its domain to show
       𝐴
∈ ℝ* and 𝐵 ∈ ℝ*. 
(Contributed by Mario Carneiro,
       3-Nov-2013.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    ⇒   ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | 
|   | 
| Theorem | ixxssixx 9977* | 
An interval is a subset of its closure.  (Contributed by Paul Chapman,
         18-Oct-2007.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    &   ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)})    &   ⊢ ((𝐴 ∈ ℝ*
 ∧ 𝑤 ∈
 ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤))   
 &   ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝑤𝑆𝐵 → 𝑤𝑈𝐵))    ⇒   ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) | 
|   | 
| Theorem | ixxdisj 9978* | 
Split an interval into disjoint pieces.  (Contributed by Mario
         Carneiro, 16-Jun-2014.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    &   ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)})    &   ⊢ ((𝐵 ∈ ℝ*
 ∧ 𝑤 ∈
 ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))    ⇒   ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅) | 
|   | 
| Theorem | ixxss1 9979* | 
Subset relationship for intervals of extended reals.  (Contributed by
         Mario Carneiro, 3-Nov-2013.)  (Revised by Mario Carneiro,
         28-Apr-2015.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    &   ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)})    &   ⊢ ((𝐴 ∈ ℝ*
 ∧ 𝐵 ∈
 ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤))    ⇒   ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) | 
|   | 
| Theorem | ixxss2 9980* | 
Subset relationship for intervals of extended reals.  (Contributed by
         Mario Carneiro, 3-Nov-2013.)  (Revised by Mario Carneiro,
         28-Apr-2015.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    &   ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)})    &   ⊢ ((𝑤 ∈ ℝ*
 ∧ 𝐵 ∈
 ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶))    ⇒   ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) | 
|   | 
| Theorem | ixxss12 9981* | 
Subset relationship for intervals of extended reals.  (Contributed by
         Mario Carneiro, 20-Feb-2015.)  (Revised by Mario Carneiro,
         28-Apr-2015.)
 | 
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)})    &   ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ {𝑧 ∈
 ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)})    &   ⊢ ((𝐴 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶 ∧ 𝐶𝑇𝑤) → 𝐴𝑅𝑤))   
 &   ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
 ∧ 𝐵 ∈
 ℝ*) → ((𝑤𝑈𝐷 ∧ 𝐷𝑋𝐵) → 𝑤𝑆𝐵))    ⇒   ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 ∧ (𝐴𝑊𝐶 ∧ 𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵)) | 
|   | 
| Theorem | iooex 9982 | 
The set of open intervals of extended reals exists.  (Contributed by NM,
       6-Feb-2007.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ (,) ∈ V | 
|   | 
| Theorem | iooval 9983* | 
Value of the open interval function.  (Contributed by NM, 24-Dec-2006.)
       (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | 
|   | 
| Theorem | iooidg 9984 | 
An open interval with identical lower and upper bounds is empty.
       (Contributed by Jim Kingdon, 29-Mar-2020.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) | 
|   | 
| Theorem | elioo3g 9985 | 
Membership in a set of open intervals of extended reals.  We use the
       fact that an operation's value is empty outside of its domain to show
       𝐴
∈ ℝ* and 𝐵 ∈ ℝ*. 
(Contributed by NM, 24-Dec-2006.)
       (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | 
|   | 
| Theorem | elioo1 9986 | 
Membership in an open interval of extended reals.  (Contributed by NM,
       24-Dec-2006.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | 
|   | 
| Theorem | elioore 9987 | 
A member of an open interval of reals is a real.  (Contributed by NM,
       17-Aug-2008.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) | 
|   | 
| Theorem | lbioog 9988 | 
An open interval does not contain its left endpoint.  (Contributed by
       Jim Kingdon, 30-Mar-2020.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → ¬ 𝐴 ∈
 (𝐴(,)𝐵)) | 
|   | 
| Theorem | ubioog 9989 | 
An open interval does not contain its right endpoint.  (Contributed by
       Jim Kingdon, 30-Mar-2020.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → ¬ 𝐵 ∈
 (𝐴(,)𝐵)) | 
|   | 
| Theorem | iooval2 9990* | 
Value of the open interval function.  (Contributed by NM, 6-Feb-2007.)
       (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | 
|   | 
| Theorem | iooss1 9991 | 
Subset relationship for open intervals of extended reals.  (Contributed
       by NM, 7-Feb-2007.)  (Revised by Mario Carneiro, 20-Feb-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) | 
|   | 
| Theorem | iooss2 9992 | 
Subset relationship for open intervals of extended reals.  (Contributed
       by NM, 7-Feb-2007.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) | 
|   | 
| Theorem | iocval 9993* | 
Value of the open-below, closed-above interval function.  (Contributed
       by NM, 24-Dec-2006.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)}) | 
|   | 
| Theorem | icoval 9994* | 
Value of the closed-below, open-above interval function.  (Contributed
       by NM, 24-Dec-2006.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)}) | 
|   | 
| Theorem | iccval 9995* | 
Value of the closed interval function.  (Contributed by NM,
       24-Dec-2006.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | 
|   | 
| Theorem | elioo2 9996 | 
Membership in an open interval of extended reals.  (Contributed by NM,
       6-Feb-2007.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | 
|   | 
| Theorem | elioc1 9997 | 
Membership in an open-below, closed-above interval of extended reals.
       (Contributed by NM, 24-Dec-2006.)  (Revised by Mario Carneiro,
       3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | 
|   | 
| Theorem | elico1 9998 | 
Membership in a closed-below, open-above interval of extended reals.
       (Contributed by NM, 24-Dec-2006.)  (Revised by Mario Carneiro,
       3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | 
|   | 
| Theorem | elicc1 9999 | 
Membership in a closed interval of extended reals.  (Contributed by NM,
       24-Dec-2006.)  (Revised by Mario Carneiro, 3-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | 
|   | 
| Theorem | iccid 10000 | 
A closed interval with identical lower and upper bounds is a singleton.
       (Contributed by Jeff Hankins, 13-Jul-2009.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |