HomeHome Intuitionistic Logic Explorer
Theorem List (p. 100 of 153)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9901-10000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxaddcld 9901 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)       (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*)
 
Theoremxadd4d 9902 Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8143. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
(𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))    &   (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))    &   (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))    &   (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))       (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
 
Theoremxnn0add4d 9903 Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 9902. (Contributed by AV, 12-Dec-2020.)
(𝜑𝐴 ∈ ℕ0*)    &   (𝜑𝐵 ∈ ℕ0*)    &   (𝜑𝐶 ∈ ℕ0*)    &   (𝜑𝐷 ∈ ℕ0*)       (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
 
Theoremxleaddadd 9904 Cancelling a factor of two in (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
 
4.5.3  Real number intervals
 
Syntaxcioo 9905 Extend class notation with the set of open intervals of extended reals.
class (,)
 
Syntaxcioc 9906 Extend class notation with the set of open-below, closed-above intervals of extended reals.
class (,]
 
Syntaxcico 9907 Extend class notation with the set of closed-below, open-above intervals of extended reals.
class [,)
 
Syntaxcicc 9908 Extend class notation with the set of closed intervals of extended reals.
class [,]
 
Definitiondf-ioo 9909* Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
 
Definitiondf-ioc 9910* Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
(,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
 
Definitiondf-ico 9911* Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
[,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
 
Definitiondf-icc 9912* Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
[,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
 
Theoremixxval 9913* Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
 
Theoremelixx1 9914* Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
 
Theoremixxf 9915* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
 
Theoremixxex 9916* The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       𝑂 ∈ V
 
Theoremixxssxr 9917* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       (𝐴𝑂𝐵) ⊆ ℝ*
 
Theoremelixx3g 9918* Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
 
Theoremixxssixx 9919* An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))       (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
 
Theoremixxdisj 9920* Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
 
Theoremixxss1 9921* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑆𝑦)})    &   ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))       ((𝐴 ∈ ℝ*𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶))
 
Theoremixxss2 9922* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑇𝑦)})    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))       ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶))
 
Theoremixxss12 9923* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))    &   ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))       (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵))
 
Theoremiooex 9924 The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
(,) ∈ V
 
Theoremiooval 9925* Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
 
Theoremiooidg 9926 An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.)
(𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅)
 
Theoremelioo3g 9927 Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioo1 9928 Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioore 9929 A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ)
 
Theoremlbioog 9930 An open interval does not contain its left endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝐴 ∈ (𝐴(,)𝐵))
 
Theoremubioog 9931 An open interval does not contain its right endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴(,)𝐵))
 
Theoremiooval2 9932* Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
 
Theoremiooss1 9933 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.)
((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
 
Theoremiooss2 9934 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
 
Theoremiocval 9935* Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)})
 
Theoremicoval 9936* Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)})
 
Theoremiccval 9937* Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
 
Theoremelioo2 9938 Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioc1 9939 Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
 
Theoremelico1 9940 Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
 
Theoremelicc1 9941 Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
 
Theoremiccid 9942 A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
(𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
 
Theoremicc0r 9943 An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅))
 
Theoremeliooxr 9944 An inhabited open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.)
(𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
 
Theoremeliooord 9945 Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
(𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
 
Theoremubioc1 9946 The upper bound belongs to an open-below, closed-above interval. See ubicc2 10002. (Contributed by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵))
 
Theoremlbico1 9947 The lower bound belongs to a closed-below, open-above interval. See lbicc2 10001. (Contributed by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
 
Theoremiccleub 9948 An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
 
Theoremiccgelb 9949 An element of a closed interval is more than or equal to its lower bound (Contributed by Thierry Arnoux, 23-Dec-2016.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
 
Theoremelioo5 9950 Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioo4g 9951 Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremioossre 9952 An open interval is a set of reals. (Contributed by NM, 31-May-2007.)
(𝐴(,)𝐵) ⊆ ℝ
 
Theoremelioc2 9953 Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
 
Theoremelico2 9954 Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
 
Theoremelicc2 9955 Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
 
Theoremelicc2i 9956 Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
 
Theoremelicc4 9957 Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
 
Theoremiccss 9958 Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
 
Theoremiccssioo 9959 Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
 
Theoremicossico 9960 Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵))
 
Theoremiccss2 9961 Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
 
Theoremiccssico 9962 Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))
 
Theoremiccssioo2 9963 Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
 
Theoremiccssico2 9964 Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))
 
Theoremioomax 9965 The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
(-∞(,)+∞) = ℝ
 
Theoremiccmax 9966 The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.)
(-∞[,]+∞) = ℝ*
 
Theoremioopos 9967 The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.)
(0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
 
Theoremioorp 9968 The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(0(,)+∞) = ℝ+
 
Theoremiooshf 9969 Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵))))
 
Theoremiocssre 9970 A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
 
Theoremicossre 9971 A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
 
Theoremiccssre 9972 A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
 
Theoremiccssxr 9973 A closed interval is a set of extended reals. (Contributed by FL, 28-Jul-2008.) (Revised by Mario Carneiro, 4-Jul-2014.)
(𝐴[,]𝐵) ⊆ ℝ*
 
Theoremiocssxr 9974 An open-below, closed-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.)
(𝐴(,]𝐵) ⊆ ℝ*
 
Theoremicossxr 9975 A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.)
(𝐴[,)𝐵) ⊆ ℝ*
 
Theoremioossicc 9976 An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.)
(𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
 
Theoremicossicc 9977 A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.)
(𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
 
Theoremiocssicc 9978 A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.)
(𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
 
Theoremioossico 9979 An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.)
(𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
 
Theoremiocssioo 9980 Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷 < 𝐵)) → (𝐶(,]𝐷) ⊆ (𝐴(,)𝐵))
 
Theoremicossioo 9981 Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴(,)𝐵))
 
Theoremioossioo 9982 Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
 
Theoremiccsupr 9983* A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
 
Theoremelioopnf 9984 Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
(𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
 
Theoremelioomnf 9985 Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
(𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)))
 
Theoremelicopnf 9986 Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.)
(𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))
 
Theoremrepos 9987 Two ways of saying that a real number is positive. (Contributed by NM, 7-May-2007.)
(𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
 
Theoremioof 9988 The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
(,):(ℝ* × ℝ*)⟶𝒫 ℝ
 
Theoremiccf 9989 The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
[,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
 
Theoremunirnioo 9990 The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
ℝ = ran (,)
 
Theoremdfioo2 9991* Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.)
(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
 
Theoremioorebasg 9992 Open intervals are elements of the set of all open intervals. (Contributed by Jim Kingdon, 4-Apr-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
 
Theoremelrege0 9993 The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
(𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
 
Theoremrge0ssre 9994 Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018.) (Proof shortened by AV, 8-Sep-2019.)
(0[,)+∞) ⊆ ℝ
 
Theoremelxrge0 9995 Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.)
(𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴))
 
Theorem0e0icopnf 9996 0 is a member of (0[,)+∞) (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ∈ (0[,)+∞)
 
Theorem0e0iccpnf 9997 0 is a member of (0[,]+∞) (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ∈ (0[,]+∞)
 
Theoremge0addcl 9998 The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.)
((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 + 𝐵) ∈ (0[,)+∞))
 
Theoremge0mulcl 9999 The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014.)
((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 · 𝐵) ∈ (0[,)+∞))
 
Theoremge0xaddcl 10000 The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015.)
((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15216
  Copyright terms: Public domain < Previous  Next >