ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpnf GIF version

Theorem ltpnf 9780
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltpnf (𝐴 ∈ ℝ → 𝐴 < +∞)

Proof of Theorem ltpnf
StepHypRef Expression
1 eqid 2177 . . . 4 +∞ = +∞
2 orc 712 . . . 4 ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))
31, 2mpan2 425 . . 3 (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))
43olcd 734 . 2 (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 < +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))
5 rexr 8003 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
6 pnfxr 8010 . . 3 +∞ ∈ ℝ*
7 ltxr 9775 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 < +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))))
85, 6, 7sylancl 413 . 2 (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 < +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))))
94, 8mpbird 167 1 (𝐴 ∈ ℝ → 𝐴 < +∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148   class class class wbr 4004  cr 7810   < cltrr 7815  +∞cpnf 7989  -∞cmnf 7990  *cxr 7991   < clt 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-pnf 7994  df-xr 7996  df-ltxr 7997
This theorem is referenced by:  ltpnfd  9781  0ltpnf  9782  xrlttr  9795  xrltso  9796  xrlttri3  9797  nltpnft  9814  npnflt  9815  xrrebnd  9819  xrre  9820  xltnegi  9835  xltadd1  9876  xposdif  9882  elioc2  9936  elicc2  9938  ioomax  9948  ioopos  9950  elioopnf  9967  elicopnf  9969  qbtwnxr  10258  dfrp2  10264  filtinf  10771  xrmaxltsup  11266  fprodge0  11645  fprodge1  11647  xblss2ps  13907
  Copyright terms: Public domain W3C validator