ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpnf GIF version

Theorem ltpnf 9901
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltpnf (𝐴 ∈ ℝ → 𝐴 < +∞)

Proof of Theorem ltpnf
StepHypRef Expression
1 eqid 2204 . . . 4 +∞ = +∞
2 orc 713 . . . 4 ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))
31, 2mpan2 425 . . 3 (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))
43olcd 735 . 2 (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 < +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))
5 rexr 8117 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
6 pnfxr 8124 . . 3 +∞ ∈ ℝ*
7 ltxr 9896 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 < +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))))
85, 6, 7sylancl 413 . 2 (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 < +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))))
94, 8mpbird 167 1 (𝐴 ∈ ℝ → 𝐴 < +∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1372  wcel 2175   class class class wbr 4043  cr 7923   < cltrr 7928  +∞cpnf 8103  -∞cmnf 8104  *cxr 8105   < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-pnf 8108  df-xr 8110  df-ltxr 8111
This theorem is referenced by:  ltpnfd  9902  0ltpnf  9903  xrlttr  9916  xrltso  9917  xrlttri3  9918  nltpnft  9935  npnflt  9936  xrrebnd  9940  xrre  9941  xltnegi  9956  xltadd1  9997  xposdif  10003  elioc2  10057  elicc2  10059  ioomax  10069  ioopos  10071  elioopnf  10088  elicopnf  10090  qbtwnxr  10398  dfrp2  10404  filtinf  10934  xrmaxltsup  11511  fprodge0  11890  fprodge1  11892  xblss2ps  14818
  Copyright terms: Public domain W3C validator