![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > metflem | GIF version |
Description: Lemma for metf 13936 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metflem | β’ (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metrel 13927 | . . . 4 β’ Rel Met | |
2 | relelfvdm 5549 | . . . 4 β’ ((Rel Met β§ π· β (Metβπ)) β π β dom Met) | |
3 | 1, 2 | mpan 424 | . . 3 β’ (π· β (Metβπ) β π β dom Met) |
4 | ismet 13929 | . . 3 β’ (π β dom Met β (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))))) | |
5 | 3, 4 | syl 14 | . 2 β’ (π· β (Metβπ) β (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))))) |
6 | 5 | ibi 176 | 1 β’ (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 class class class wbr 4005 Γ cxp 4626 dom cdm 4628 Rel wrel 4633 βΆwf 5214 βcfv 5218 (class class class)co 5877 βcr 7812 0cc0 7813 + caddc 7816 β€ cle 7995 Metcmet 13526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-met 13534 |
This theorem is referenced by: metf 13936 |
Copyright terms: Public domain | W3C validator |