ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfuns GIF version

Theorem fliftfuns 5766
Description: The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftfuns (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑋𝑧𝑋 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝑧,𝑦,𝑅   𝑦,𝐹,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftfuns
StepHypRef Expression
1 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
2 nfcv 2308 . . . . 5 𝑦𝐴, 𝐵
3 nfcsb1v 3078 . . . . . 6 𝑥𝑦 / 𝑥𝐴
4 nfcsb1v 3078 . . . . . 6 𝑥𝑦 / 𝑥𝐵
53, 4nfop 3774 . . . . 5 𝑥𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵
6 csbeq1a 3054 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
7 csbeq1a 3054 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
86, 7opeq12d 3766 . . . . 5 (𝑥 = 𝑦 → ⟨𝐴, 𝐵⟩ = ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
92, 5, 8cbvmpt 4077 . . . 4 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
109rneqi 4832 . . 3 ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = ran (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
111, 10eqtri 2186 . 2 𝐹 = ran (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
12 flift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑅)
1312ralrimiva 2539 . . 3 (𝜑 → ∀𝑥𝑋 𝐴𝑅)
143nfel1 2319 . . . 4 𝑥𝑦 / 𝑥𝐴𝑅
156eleq1d 2235 . . . 4 (𝑥 = 𝑦 → (𝐴𝑅𝑦 / 𝑥𝐴𝑅))
1614, 15rspc 2824 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐴𝑅𝑦 / 𝑥𝐴𝑅))
1713, 16mpan9 279 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴𝑅)
18 flift.3 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
1918ralrimiva 2539 . . 3 (𝜑 → ∀𝑥𝑋 𝐵𝑆)
204nfel1 2319 . . . 4 𝑥𝑦 / 𝑥𝐵𝑆
217eleq1d 2235 . . . 4 (𝑥 = 𝑦 → (𝐵𝑆𝑦 / 𝑥𝐵𝑆))
2220, 21rspc 2824 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐵𝑆𝑦 / 𝑥𝐵𝑆))
2319, 22mpan9 279 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑆)
24 csbeq1 3048 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
25 csbeq1 3048 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
2611, 17, 23, 24, 25fliftfun 5764 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑋𝑧𝑋 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  csb 3045  cop 3579  cmpt 4043  ran crn 4605  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator