![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fliftfuns | GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
2 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑦⟨𝐴, 𝐵⟩ | |
3 | nfcsb1v 3091 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
4 | nfcsb1v 3091 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | 3, 4 | nfop 3795 | . . . . 5 ⊢ Ⅎ𝑥⟨⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵⟩ |
6 | csbeq1a 3067 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
7 | csbeq1a 3067 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
8 | 6, 7 | opeq12d 3787 | . . . . 5 ⊢ (𝑥 = 𝑦 → ⟨𝐴, 𝐵⟩ = ⟨⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵⟩) |
9 | 2, 5, 8 | cbvmpt 4099 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑦 ∈ 𝑋 ↦ ⟨⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵⟩) |
10 | 9 | rneqi 4856 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) = ran (𝑦 ∈ 𝑋 ↦ ⟨⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵⟩) |
11 | 1, 10 | eqtri 2198 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ ⟨⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵⟩) |
12 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
13 | 12 | ralrimiva 2550 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅) |
14 | 3 | nfel1 2330 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅 |
15 | 6 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑅 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
16 | 14, 15 | rspc 2836 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
17 | 13, 16 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅) |
18 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
19 | 18 | ralrimiva 2550 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆) |
20 | 4 | nfel1 2330 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆 |
21 | 7 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑆 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
22 | 20, 21 | rspc 2836 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
23 | 19, 22 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆) |
24 | csbeq1 3061 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
25 | csbeq1 3061 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
26 | 11, 17, 23, 24, 25 | fliftfun 5797 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⦋csb 3058 ⟨cop 3596 ↦ cmpt 4065 ran crn 4628 Fun wfun 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |