ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfuns GIF version

Theorem fliftfuns 5841
Description: The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftfuns (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑋𝑧𝑋 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝑧,𝑦,𝑅   𝑦,𝐹,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftfuns
StepHypRef Expression
1 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
2 nfcv 2336 . . . . 5 𝑦𝐴, 𝐵
3 nfcsb1v 3113 . . . . . 6 𝑥𝑦 / 𝑥𝐴
4 nfcsb1v 3113 . . . . . 6 𝑥𝑦 / 𝑥𝐵
53, 4nfop 3820 . . . . 5 𝑥𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵
6 csbeq1a 3089 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
7 csbeq1a 3089 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
86, 7opeq12d 3812 . . . . 5 (𝑥 = 𝑦 → ⟨𝐴, 𝐵⟩ = ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
92, 5, 8cbvmpt 4124 . . . 4 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
109rneqi 4890 . . 3 ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = ran (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
111, 10eqtri 2214 . 2 𝐹 = ran (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
12 flift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑅)
1312ralrimiva 2567 . . 3 (𝜑 → ∀𝑥𝑋 𝐴𝑅)
143nfel1 2347 . . . 4 𝑥𝑦 / 𝑥𝐴𝑅
156eleq1d 2262 . . . 4 (𝑥 = 𝑦 → (𝐴𝑅𝑦 / 𝑥𝐴𝑅))
1614, 15rspc 2858 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐴𝑅𝑦 / 𝑥𝐴𝑅))
1713, 16mpan9 281 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴𝑅)
18 flift.3 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
1918ralrimiva 2567 . . 3 (𝜑 → ∀𝑥𝑋 𝐵𝑆)
204nfel1 2347 . . . 4 𝑥𝑦 / 𝑥𝐵𝑆
217eleq1d 2262 . . . 4 (𝑥 = 𝑦 → (𝐵𝑆𝑦 / 𝑥𝐵𝑆))
2220, 21rspc 2858 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐵𝑆𝑦 / 𝑥𝐵𝑆))
2319, 22mpan9 281 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑆)
24 csbeq1 3083 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
25 csbeq1 3083 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
2611, 17, 23, 24, 25fliftfun 5839 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑋𝑧𝑋 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  csb 3080  cop 3621  cmpt 4090  ran crn 4660  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator