ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfuns GIF version

Theorem fliftfuns 5848
Description: The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftfuns (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑋𝑧𝑋 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝑧,𝑦,𝑅   𝑦,𝐹,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftfuns
StepHypRef Expression
1 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
2 nfcv 2339 . . . . 5 𝑦𝐴, 𝐵
3 nfcsb1v 3117 . . . . . 6 𝑥𝑦 / 𝑥𝐴
4 nfcsb1v 3117 . . . . . 6 𝑥𝑦 / 𝑥𝐵
53, 4nfop 3825 . . . . 5 𝑥𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵
6 csbeq1a 3093 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
7 csbeq1a 3093 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
86, 7opeq12d 3817 . . . . 5 (𝑥 = 𝑦 → ⟨𝐴, 𝐵⟩ = ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
92, 5, 8cbvmpt 4129 . . . 4 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
109rneqi 4895 . . 3 ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = ran (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
111, 10eqtri 2217 . 2 𝐹 = ran (𝑦𝑋 ↦ ⟨𝑦 / 𝑥𝐴, 𝑦 / 𝑥𝐵⟩)
12 flift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑅)
1312ralrimiva 2570 . . 3 (𝜑 → ∀𝑥𝑋 𝐴𝑅)
143nfel1 2350 . . . 4 𝑥𝑦 / 𝑥𝐴𝑅
156eleq1d 2265 . . . 4 (𝑥 = 𝑦 → (𝐴𝑅𝑦 / 𝑥𝐴𝑅))
1614, 15rspc 2862 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐴𝑅𝑦 / 𝑥𝐴𝑅))
1713, 16mpan9 281 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴𝑅)
18 flift.3 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
1918ralrimiva 2570 . . 3 (𝜑 → ∀𝑥𝑋 𝐵𝑆)
204nfel1 2350 . . . 4 𝑥𝑦 / 𝑥𝐵𝑆
217eleq1d 2265 . . . 4 (𝑥 = 𝑦 → (𝐵𝑆𝑦 / 𝑥𝐵𝑆))
2220, 21rspc 2862 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐵𝑆𝑦 / 𝑥𝐵𝑆))
2319, 22mpan9 281 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑆)
24 csbeq1 3087 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
25 csbeq1 3087 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
2611, 17, 23, 24, 25fliftfun 5846 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑋𝑧𝑋 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  csb 3084  cop 3626  cmpt 4095  ran crn 4665  Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator