![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qliftfuns | GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
Ref | Expression |
---|---|
qliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) | |
2 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑦⟨[𝑥]𝑅, 𝐴⟩ | |
3 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑥[𝑦]𝑅 | |
4 | nfcsb1v 3092 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
5 | 3, 4 | nfop 3796 | . . . . 5 ⊢ Ⅎ𝑥⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩ |
6 | eceq1 6573 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
7 | csbeq1a 3068 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
8 | 6, 7 | opeq12d 3788 | . . . . 5 ⊢ (𝑥 = 𝑦 → ⟨[𝑥]𝑅, 𝐴⟩ = ⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩) |
9 | 2, 5, 8 | cbvmpt 4100 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = (𝑦 ∈ 𝑋 ↦ ⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩) |
10 | 9 | rneqi 4857 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = ran (𝑦 ∈ 𝑋 ↦ ⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩) |
11 | 1, 10 | eqtri 2198 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ ⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩) |
12 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
13 | 12 | ralrimiva 2550 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌) |
14 | 4 | nfel1 2330 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌 |
15 | 7 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑌 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
16 | 14, 15 | rspc 2837 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
17 | 13, 16 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌) |
18 | qlift.3 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
19 | qlift.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ V) | |
20 | csbeq1 3062 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
21 | 11, 17, 18, 19, 20 | qliftfun 6620 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 ⦋csb 3059 ⟨cop 3597 class class class wbr 4005 ↦ cmpt 4066 ran crn 4629 Fun wfun 5212 Er wer 6535 [cec 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-er 6538 df-ec 6540 df-qs 6544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |