ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfuns GIF version

Theorem qliftfuns 6479
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftfuns (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftfuns
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 nfcv 2256 . . . . 5 𝑦⟨[𝑥]𝑅, 𝐴
3 nfcv 2256 . . . . . 6 𝑥[𝑦]𝑅
4 nfcsb1v 3003 . . . . . 6 𝑥𝑦 / 𝑥𝐴
53, 4nfop 3689 . . . . 5 𝑥⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴
6 eceq1 6430 . . . . . 6 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
7 csbeq1a 2981 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
86, 7opeq12d 3681 . . . . 5 (𝑥 = 𝑦 → ⟨[𝑥]𝑅, 𝐴⟩ = ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
92, 5, 8cbvmpt 3991 . . . 4 (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
109rneqi 4735 . . 3 ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = ran (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
111, 10eqtri 2136 . 2 𝐹 = ran (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
12 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
1312ralrimiva 2480 . . 3 (𝜑 → ∀𝑥𝑋 𝐴𝑌)
144nfel1 2267 . . . 4 𝑥𝑦 / 𝑥𝐴𝑌
157eleq1d 2184 . . . 4 (𝑥 = 𝑦 → (𝐴𝑌𝑦 / 𝑥𝐴𝑌))
1614, 15rspc 2755 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐴𝑌𝑦 / 𝑥𝐴𝑌))
1713, 16mpan9 277 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴𝑌)
18 qlift.3 . 2 (𝜑𝑅 Er 𝑋)
19 qlift.4 . 2 (𝜑𝑋 ∈ V)
20 csbeq1 2976 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
2111, 17, 18, 19, 20qliftfun 6477 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1312   = wceq 1314  wcel 1463  wral 2391  Vcvv 2658  csb 2973  cop 3498   class class class wbr 3897  cmpt 3957  ran crn 4508  Fun wfun 5085   Er wer 6392  [cec 6393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-er 6395  df-ec 6397  df-qs 6401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator