![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qliftfuns | GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
Ref | Expression |
---|---|
qliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
2 | nfcv 2329 | . . . . 5 ⊢ Ⅎ𝑦〈[𝑥]𝑅, 𝐴〉 | |
3 | nfcv 2329 | . . . . . 6 ⊢ Ⅎ𝑥[𝑦]𝑅 | |
4 | nfcsb1v 3102 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
5 | 3, 4 | nfop 3806 | . . . . 5 ⊢ Ⅎ𝑥〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉 |
6 | eceq1 6584 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
7 | csbeq1a 3078 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
8 | 6, 7 | opeq12d 3798 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈[𝑥]𝑅, 𝐴〉 = 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
9 | 2, 5, 8 | cbvmpt 4110 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) = (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
10 | 9 | rneqi 4867 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) = ran (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
11 | 1, 10 | eqtri 2208 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
12 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
13 | 12 | ralrimiva 2560 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌) |
14 | 4 | nfel1 2340 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌 |
15 | 7 | eleq1d 2256 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑌 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
16 | 14, 15 | rspc 2847 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
17 | 13, 16 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌) |
18 | qlift.3 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
19 | qlift.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ V) | |
20 | csbeq1 3072 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
21 | 11, 17, 18, 19, 20 | qliftfun 6631 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1361 = wceq 1363 ∈ wcel 2158 ∀wral 2465 Vcvv 2749 ⦋csb 3069 〈cop 3607 class class class wbr 4015 ↦ cmpt 4076 ran crn 4639 Fun wfun 5222 Er wer 6546 [cec 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-er 6549 df-ec 6551 df-qs 6555 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |