| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > qliftfuns | GIF version | ||
| Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | 
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | 
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) | 
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) | 
| Ref | Expression | 
|---|---|
| qliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 2 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑦〈[𝑥]𝑅, 𝐴〉 | |
| 3 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥[𝑦]𝑅 | |
| 4 | nfcsb1v 3117 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
| 5 | 3, 4 | nfop 3824 | . . . . 5 ⊢ Ⅎ𝑥〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉 | 
| 6 | eceq1 6627 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
| 7 | csbeq1a 3093 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
| 8 | 6, 7 | opeq12d 3816 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈[𝑥]𝑅, 𝐴〉 = 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) | 
| 9 | 2, 5, 8 | cbvmpt 4128 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) = (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) | 
| 10 | 9 | rneqi 4894 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) = ran (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) | 
| 11 | 1, 10 | eqtri 2217 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) | 
| 12 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 13 | 12 | ralrimiva 2570 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌) | 
| 14 | 4 | nfel1 2350 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌 | 
| 15 | 7 | eleq1d 2265 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑌 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) | 
| 16 | 14, 15 | rspc 2862 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) | 
| 17 | 13, 16 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌) | 
| 18 | qlift.3 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 19 | qlift.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ V) | |
| 20 | csbeq1 3087 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
| 21 | 11, 17, 18, 19, 20 | qliftfun 6676 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ⦋csb 3084 〈cop 3625 class class class wbr 4033 ↦ cmpt 4094 ran crn 4664 Fun wfun 5252 Er wer 6589 [cec 6590 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-er 6592 df-ec 6594 df-qs 6598 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |