![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qliftfuns | GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
Ref | Expression |
---|---|
qliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
2 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑦〈[𝑥]𝑅, 𝐴〉 | |
3 | nfcv 2336 | . . . . . 6 ⊢ Ⅎ𝑥[𝑦]𝑅 | |
4 | nfcsb1v 3113 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
5 | 3, 4 | nfop 3820 | . . . . 5 ⊢ Ⅎ𝑥〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉 |
6 | eceq1 6622 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
7 | csbeq1a 3089 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
8 | 6, 7 | opeq12d 3812 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈[𝑥]𝑅, 𝐴〉 = 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
9 | 2, 5, 8 | cbvmpt 4124 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) = (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
10 | 9 | rneqi 4890 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) = ran (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
11 | 1, 10 | eqtri 2214 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
12 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
13 | 12 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌) |
14 | 4 | nfel1 2347 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌 |
15 | 7 | eleq1d 2262 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑌 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
16 | 14, 15 | rspc 2858 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
17 | 13, 16 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌) |
18 | qlift.3 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
19 | qlift.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ V) | |
20 | csbeq1 3083 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
21 | 11, 17, 18, 19, 20 | qliftfun 6671 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ⦋csb 3080 〈cop 3621 class class class wbr 4029 ↦ cmpt 4090 ran crn 4660 Fun wfun 5248 Er wer 6584 [cec 6585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-er 6587 df-ec 6589 df-qs 6593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |