| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0rei 9279 | . 2 ⊢ 𝐴 ∈ ℝ |
| 3 | 2 | recni 8057 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7896 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: nn0le2xi 9318 num0u 9486 num0h 9487 numsuc 9489 numsucc 9515 numma 9519 nummac 9520 numma2c 9521 numadd 9522 numaddc 9523 nummul1c 9524 nummul2c 9525 decrmanc 9532 decrmac 9533 decaddi 9535 decaddci 9536 decsubi 9538 decmul1 9539 decmulnc 9542 11multnc 9543 decmul10add 9544 6p5lem 9545 4t3lem 9572 7t3e21 9585 7t6e42 9588 8t3e24 9591 8t4e32 9592 8t8e64 9596 9t3e27 9598 9t4e36 9599 9t5e45 9600 9t6e54 9601 9t7e63 9602 9t11e99 9605 decbin0 9615 decbin2 9616 sq10 10823 3dec 10825 3dvdsdec 12049 3dvds2dec 12050 3lcm2e6 12355 dec5dvds 12608 dec5dvds2 12609 dec2nprm 12611 modxai 12612 mod2xi 12613 modsubi 12615 gcdi 12616 numexp0 12618 numexp1 12619 numexpp1 12620 numexp2x 12621 decsplit0b 12622 decsplit0 12623 decsplit1 12624 decsplit 12625 karatsuba 12626 2exp8 12631 |
| Copyright terms: Public domain | W3C validator |