Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | 1 | nn0rei 9146 | . 2 ⊢ 𝐴 ∈ ℝ |
3 | 2 | recni 7932 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ℂcc 7772 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-int 3832 df-inn 8879 df-n0 9136 |
This theorem is referenced by: nn0le2xi 9185 num0u 9353 num0h 9354 numsuc 9356 numsucc 9382 numma 9386 nummac 9387 numma2c 9388 numadd 9389 numaddc 9390 nummul1c 9391 nummul2c 9392 decrmanc 9399 decrmac 9400 decaddi 9402 decaddci 9403 decsubi 9405 decmul1 9406 decmulnc 9409 11multnc 9410 decmul10add 9411 6p5lem 9412 4t3lem 9439 7t3e21 9452 7t6e42 9455 8t3e24 9458 8t4e32 9459 8t8e64 9463 9t3e27 9465 9t4e36 9466 9t5e45 9467 9t6e54 9468 9t7e63 9469 9t11e99 9472 decbin0 9482 decbin2 9483 sq10 10646 3dec 10648 3dvdsdec 11824 3dvds2dec 11825 3lcm2e6 12114 |
Copyright terms: Public domain | W3C validator |