| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0rei 9326 | . 2 ⊢ 𝐴 ∈ ℝ |
| 3 | 2 | recni 8104 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℂcc 7943 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-int 3892 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: nn0le2xi 9365 num0u 9534 num0h 9535 numsuc 9537 numsucc 9563 numma 9567 nummac 9568 numma2c 9569 numadd 9570 numaddc 9571 nummul1c 9572 nummul2c 9573 decrmanc 9580 decrmac 9581 decaddi 9583 decaddci 9584 decsubi 9586 decmul1 9587 decmulnc 9590 11multnc 9591 decmul10add 9592 6p5lem 9593 4t3lem 9620 7t3e21 9633 7t6e42 9636 8t3e24 9639 8t4e32 9640 8t8e64 9644 9t3e27 9646 9t4e36 9647 9t5e45 9648 9t6e54 9649 9t7e63 9650 9t11e99 9653 decbin0 9663 decbin2 9664 sq10 10879 3dec 10881 3dvdsdec 12251 3dvds2dec 12252 3lcm2e6 12557 dec5dvds 12810 dec5dvds2 12811 dec2nprm 12813 modxai 12814 mod2xi 12815 modsubi 12817 gcdi 12818 numexp0 12820 numexp1 12821 numexpp1 12822 numexp2x 12823 decsplit0b 12824 decsplit0 12825 decsplit1 12826 decsplit 12827 karatsuba 12828 2exp8 12833 |
| Copyright terms: Public domain | W3C validator |