| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0rei 9288 | . 2 ⊢ 𝐴 ∈ ℝ |
| 3 | 2 | recni 8066 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ℂcc 7905 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 ax-rnegex 8016 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-int 3885 df-inn 9019 df-n0 9278 |
| This theorem is referenced by: nn0le2xi 9327 num0u 9496 num0h 9497 numsuc 9499 numsucc 9525 numma 9529 nummac 9530 numma2c 9531 numadd 9532 numaddc 9533 nummul1c 9534 nummul2c 9535 decrmanc 9542 decrmac 9543 decaddi 9545 decaddci 9546 decsubi 9548 decmul1 9549 decmulnc 9552 11multnc 9553 decmul10add 9554 6p5lem 9555 4t3lem 9582 7t3e21 9595 7t6e42 9598 8t3e24 9601 8t4e32 9602 8t8e64 9606 9t3e27 9608 9t4e36 9609 9t5e45 9610 9t6e54 9611 9t7e63 9612 9t11e99 9615 decbin0 9625 decbin2 9626 sq10 10838 3dec 10840 3dvdsdec 12095 3dvds2dec 12096 3lcm2e6 12401 dec5dvds 12654 dec5dvds2 12655 dec2nprm 12657 modxai 12658 mod2xi 12659 modsubi 12661 gcdi 12662 numexp0 12664 numexp1 12665 numexpp1 12666 numexp2x 12667 decsplit0b 12668 decsplit0 12669 decsplit1 12670 decsplit 12671 karatsuba 12672 2exp8 12677 |
| Copyright terms: Public domain | W3C validator |