| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0rei 9376 | . 2 ⊢ 𝐴 ∈ ℝ |
| 3 | 2 | recni 8154 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℂcc 7993 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-int 3923 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: nn0le2xi 9415 num0u 9584 num0h 9585 numsuc 9587 numsucc 9613 numma 9617 nummac 9618 numma2c 9619 numadd 9620 numaddc 9621 nummul1c 9622 nummul2c 9623 decrmanc 9630 decrmac 9631 decaddi 9633 decaddci 9634 decsubi 9636 decmul1 9637 decmulnc 9640 11multnc 9641 decmul10add 9642 6p5lem 9643 4t3lem 9670 7t3e21 9683 7t6e42 9686 8t3e24 9689 8t4e32 9690 8t8e64 9694 9t3e27 9696 9t4e36 9697 9t5e45 9698 9t6e54 9699 9t7e63 9700 9t11e99 9703 decbin0 9713 decbin2 9714 sq10 10929 3dec 10931 cats1fvn 11291 3dvdsdec 12371 3dvds2dec 12372 3lcm2e6 12677 dec5dvds 12930 dec5dvds2 12931 dec2nprm 12933 modxai 12934 mod2xi 12935 modsubi 12937 gcdi 12938 numexp0 12940 numexp1 12941 numexpp1 12942 numexp2x 12943 decsplit0b 12944 decsplit0 12945 decsplit1 12946 decsplit 12947 karatsuba 12948 2exp8 12953 |
| Copyright terms: Public domain | W3C validator |