![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | 1 | nn0rei 9254 | . 2 ⊢ 𝐴 ∈ ℝ |
3 | 2 | recni 8033 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ℂcc 7872 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-int 3872 df-inn 8985 df-n0 9244 |
This theorem is referenced by: nn0le2xi 9293 num0u 9461 num0h 9462 numsuc 9464 numsucc 9490 numma 9494 nummac 9495 numma2c 9496 numadd 9497 numaddc 9498 nummul1c 9499 nummul2c 9500 decrmanc 9507 decrmac 9508 decaddi 9510 decaddci 9511 decsubi 9513 decmul1 9514 decmulnc 9517 11multnc 9518 decmul10add 9519 6p5lem 9520 4t3lem 9547 7t3e21 9560 7t6e42 9563 8t3e24 9566 8t4e32 9567 8t8e64 9571 9t3e27 9573 9t4e36 9574 9t5e45 9575 9t6e54 9576 9t7e63 9577 9t11e99 9580 decbin0 9590 decbin2 9591 sq10 10786 3dec 10788 3dvdsdec 12009 3dvds2dec 12010 3lcm2e6 12301 |
Copyright terms: Public domain | W3C validator |