Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | 1 | nn0rei 9125 | . 2 ⊢ 𝐴 ∈ ℝ |
3 | 2 | recni 7911 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℂcc 7751 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-int 3825 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nn0le2xi 9164 num0u 9332 num0h 9333 numsuc 9335 numsucc 9361 numma 9365 nummac 9366 numma2c 9367 numadd 9368 numaddc 9369 nummul1c 9370 nummul2c 9371 decrmanc 9378 decrmac 9379 decaddi 9381 decaddci 9382 decsubi 9384 decmul1 9385 decmulnc 9388 11multnc 9389 decmul10add 9390 6p5lem 9391 4t3lem 9418 7t3e21 9431 7t6e42 9434 8t3e24 9437 8t4e32 9438 8t8e64 9442 9t3e27 9444 9t4e36 9445 9t5e45 9446 9t6e54 9447 9t7e63 9448 9t11e99 9451 decbin0 9461 decbin2 9462 sq10 10625 3dec 10627 3dvdsdec 11802 3dvds2dec 11803 3lcm2e6 12092 |
Copyright terms: Public domain | W3C validator |