![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | 1 | nn0rei 8684 | . 2 ⊢ 𝐴 ∈ ℝ |
3 | 2 | recni 7500 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 ℂcc 7348 ℕ0cn0 8673 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-cnex 7436 ax-resscn 7437 ax-1re 7439 ax-addrcl 7442 ax-rnegex 7454 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-int 3689 df-inn 8423 df-n0 8674 |
This theorem is referenced by: nn0le2xi 8723 num0u 8887 num0h 8888 numsuc 8890 numsucc 8916 numma 8920 nummac 8921 numma2c 8922 numadd 8923 numaddc 8924 nummul1c 8925 nummul2c 8926 decrmanc 8933 decrmac 8934 decaddi 8936 decaddci 8937 decsubi 8939 decmul1 8940 decmulnc 8943 11multnc 8944 decmul10add 8945 6p5lem 8946 4t3lem 8973 7t3e21 8986 7t6e42 8989 8t3e24 8992 8t4e32 8993 8t8e64 8997 9t3e27 8999 9t4e36 9000 9t5e45 9001 9t6e54 9002 9t7e63 9003 9t11e99 9006 decbin0 9016 decbin2 9017 sq10 10121 3dec 10123 3dvdsdec 11143 3dvds2dec 11144 3lcm2e6 11417 |
Copyright terms: Public domain | W3C validator |