| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0rei 9262 | . 2 ⊢ 𝐴 ∈ ℝ |
| 3 | 2 | recni 8040 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7879 ℕ0cn0 9251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 ax-rnegex 7990 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 8993 df-n0 9252 |
| This theorem is referenced by: nn0le2xi 9301 num0u 9469 num0h 9470 numsuc 9472 numsucc 9498 numma 9502 nummac 9503 numma2c 9504 numadd 9505 numaddc 9506 nummul1c 9507 nummul2c 9508 decrmanc 9515 decrmac 9516 decaddi 9518 decaddci 9519 decsubi 9521 decmul1 9522 decmulnc 9525 11multnc 9526 decmul10add 9527 6p5lem 9528 4t3lem 9555 7t3e21 9568 7t6e42 9571 8t3e24 9574 8t4e32 9575 8t8e64 9579 9t3e27 9581 9t4e36 9582 9t5e45 9583 9t6e54 9584 9t7e63 9585 9t11e99 9588 decbin0 9598 decbin2 9599 sq10 10806 3dec 10808 3dvdsdec 12032 3dvds2dec 12033 3lcm2e6 12338 dec5dvds 12591 dec5dvds2 12592 dec2nprm 12594 modxai 12595 mod2xi 12596 modsubi 12598 gcdi 12599 numexp0 12601 numexp1 12602 numexpp1 12603 numexp2x 12604 decsplit0b 12605 decsplit0 12606 decsplit1 12607 decsplit 12608 karatsuba 12609 2exp8 12614 |
| Copyright terms: Public domain | W3C validator |