![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cni | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | 1 | nn0rei 9201 | . 2 ⊢ 𝐴 ∈ ℝ |
3 | 2 | recni 7983 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2158 ℂcc 7823 ℕ0cn0 9190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-sep 4133 ax-cnex 7916 ax-resscn 7917 ax-1re 7919 ax-addrcl 7922 ax-rnegex 7934 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-int 3857 df-inn 8934 df-n0 9191 |
This theorem is referenced by: nn0le2xi 9240 num0u 9408 num0h 9409 numsuc 9411 numsucc 9437 numma 9441 nummac 9442 numma2c 9443 numadd 9444 numaddc 9445 nummul1c 9446 nummul2c 9447 decrmanc 9454 decrmac 9455 decaddi 9457 decaddci 9458 decsubi 9460 decmul1 9461 decmulnc 9464 11multnc 9465 decmul10add 9466 6p5lem 9467 4t3lem 9494 7t3e21 9507 7t6e42 9510 8t3e24 9513 8t4e32 9514 8t8e64 9518 9t3e27 9520 9t4e36 9521 9t5e45 9522 9t6e54 9523 9t7e63 9524 9t11e99 9527 decbin0 9537 decbin2 9538 sq10 10706 3dec 10708 3dvdsdec 11884 3dvds2dec 11885 3lcm2e6 12174 |
Copyright terms: Public domain | W3C validator |