ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtposg GIF version

Theorem brtposg 5954
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
Assertion
Ref Expression
brtposg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))

Proof of Theorem brtposg
StepHypRef Expression
1 opswapg 4874 . . . . 5 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
21breq1d 3824 . . . 4 ((𝐴𝑉𝐵𝑊) → ( {⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
323adant3 961 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ( {⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
43anbi2d 452 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶) ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶)))
5 brtpos2 5951 . . 3 (𝐶𝑋 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
653ad2ant3 964 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
7 opexg 4022 . . . . . . . . 9 ((𝐵𝑊𝐴𝑉) → ⟨𝐵, 𝐴⟩ ∈ V)
87ancoms 264 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ⟨𝐵, 𝐴⟩ ∈ V)
98anim1i 333 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋))
1093impa 1136 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋))
11 breldmg 4603 . . . . . . 7 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋 ∧ ⟨𝐵, 𝐴𝐹𝐶) → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
12113expia 1143 . . . . . 6 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
1310, 12syl 14 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
14 opelcnvg 4577 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
15143adant3 961 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
1613, 15sylibrd 167 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
17 elun1 3153 . . . 4 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}))
1816, 17syl6 33 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅})))
1918pm4.71rd 386 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶)))
204, 6, 193bitr4d 218 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922  wcel 1436  Vcvv 2614  cun 2984  c0 3272  {csn 3425  cop 3428   cuni 3630   class class class wbr 3814  ccnv 4403  dom cdm 4404  tpos ctpos 5944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2616  df-sbc 2829  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-mpt 3870  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-fv 4980  df-tpos 5945
This theorem is referenced by:  ottposg  5955  dmtpos  5956  rntpos  5957  ovtposg  5959  dftpos3  5962  tpostpos  5964
  Copyright terms: Public domain W3C validator