ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtposg GIF version

Theorem brtposg 6309
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
Assertion
Ref Expression
brtposg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))

Proof of Theorem brtposg
StepHypRef Expression
1 opswapg 5153 . . . . 5 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
21breq1d 4040 . . . 4 ((𝐴𝑉𝐵𝑊) → ( {⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
323adant3 1019 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ( {⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
43anbi2d 464 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶) ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶)))
5 brtpos2 6306 . . 3 (𝐶𝑋 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
653ad2ant3 1022 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
7 opexg 4258 . . . . . . . . 9 ((𝐵𝑊𝐴𝑉) → ⟨𝐵, 𝐴⟩ ∈ V)
87ancoms 268 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ⟨𝐵, 𝐴⟩ ∈ V)
98anim1i 340 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋))
1093impa 1196 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋))
11 breldmg 4869 . . . . . . 7 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋 ∧ ⟨𝐵, 𝐴𝐹𝐶) → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
12113expia 1207 . . . . . 6 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
1310, 12syl 14 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
14 opelcnvg 4843 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
15143adant3 1019 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
1613, 15sylibrd 169 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
17 elun1 3327 . . . 4 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}))
1816, 17syl6 33 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅})))
1918pm4.71rd 394 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶)))
204, 6, 193bitr4d 220 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2164  Vcvv 2760  cun 3152  c0 3447  {csn 3619  cop 3622   cuni 3836   class class class wbr 4030  ccnv 4659  dom cdm 4660  tpos ctpos 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-tpos 6300
This theorem is referenced by:  ottposg  6310  dmtpos  6311  rntpos  6312  ovtposg  6314  dftpos3  6317  tpostpos  6319
  Copyright terms: Public domain W3C validator