ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtposg GIF version

Theorem brtposg 6321
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
Assertion
Ref Expression
brtposg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))

Proof of Theorem brtposg
StepHypRef Expression
1 opswapg 5157 . . . . 5 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
21breq1d 4044 . . . 4 ((𝐴𝑉𝐵𝑊) → ( {⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
323adant3 1019 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ( {⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
43anbi2d 464 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶) ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶)))
5 brtpos2 6318 . . 3 (𝐶𝑋 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
653ad2ant3 1022 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
7 opexg 4262 . . . . . . . . 9 ((𝐵𝑊𝐴𝑉) → ⟨𝐵, 𝐴⟩ ∈ V)
87ancoms 268 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ⟨𝐵, 𝐴⟩ ∈ V)
98anim1i 340 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋))
1093impa 1196 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋))
11 breldmg 4873 . . . . . . 7 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋 ∧ ⟨𝐵, 𝐴𝐹𝐶) → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
12113expia 1207 . . . . . 6 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
1310, 12syl 14 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
14 opelcnvg 4847 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
15143adant3 1019 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
1613, 15sylibrd 169 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
17 elun1 3331 . . . 4 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}))
1816, 17syl6 33 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅})))
1918pm4.71rd 394 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐴𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶)))
204, 6, 193bitr4d 220 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167  Vcvv 2763  cun 3155  c0 3451  {csn 3623  cop 3626   cuni 3840   class class class wbr 4034  ccnv 4663  dom cdm 4664  tpos ctpos 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-tpos 6312
This theorem is referenced by:  ottposg  6322  dmtpos  6323  rntpos  6324  ovtposg  6326  dftpos3  6329  tpostpos  6331
  Copyright terms: Public domain W3C validator