ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax1rid GIF version

Theorem ax1rid 7944
Description: 1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7986. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ax1rid (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)

Proof of Theorem ax1rid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-r 7889 . 2 ℝ = (R × {0R})
2 oveq1 5929 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ · 1) = (𝐴 · 1))
3 id 19 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴)
42, 3eqeq12d 2211 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 · 1) = 𝐴))
5 elsni 3640 . . 3 (𝑦 ∈ {0R} → 𝑦 = 0R)
6 df-1 7887 . . . . . . 7 1 = ⟨1R, 0R
76oveq2i 5933 . . . . . 6 (⟨𝑥, 0R⟩ · 1) = (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩)
8 1sr 7818 . . . . . . . 8 1RR
9 mulresr 7905 . . . . . . . 8 ((𝑥R ∧ 1RR) → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
108, 9mpan2 425 . . . . . . 7 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
11 1idsr 7835 . . . . . . . 8 (𝑥R → (𝑥 ·R 1R) = 𝑥)
1211opeq1d 3814 . . . . . . 7 (𝑥R → ⟨(𝑥 ·R 1R), 0R⟩ = ⟨𝑥, 0R⟩)
1310, 12eqtrd 2229 . . . . . 6 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨𝑥, 0R⟩)
147, 13eqtrid 2241 . . . . 5 (𝑥R → (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩)
15 opeq2 3809 . . . . . . 7 (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩)
1615oveq1d 5937 . . . . . 6 (𝑦 = 0R → (⟨𝑥, 𝑦⟩ · 1) = (⟨𝑥, 0R⟩ · 1))
1716, 15eqeq12d 2211 . . . . 5 (𝑦 = 0R → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩))
1814, 17imbitrrid 156 . . . 4 (𝑦 = 0R → (𝑥R → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩))
1918impcom 125 . . 3 ((𝑥R𝑦 = 0R) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
205, 19sylan2 286 . 2 ((𝑥R𝑦 ∈ {0R}) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
211, 4, 20optocl 4739 1 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {csn 3622  cop 3625  (class class class)co 5922  Rcnr 7364  0Rc0r 7365  1Rc1r 7366   ·R cmr 7369  cr 7878  1c1 7880   · cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-imp 7536  df-enr 7793  df-nr 7794  df-plr 7795  df-mr 7796  df-0r 7798  df-1r 7799  df-m1r 7800  df-c 7885  df-1 7887  df-r 7889  df-mul 7891
This theorem is referenced by:  rereceu  7956  recriota  7957
  Copyright terms: Public domain W3C validator