![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax1rid | GIF version |
Description: 1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7920. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 7823 | . 2 ⊢ ℝ = (R × {0R}) | |
2 | oveq1 5884 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ · 1) = (𝐴 · 1)) | |
3 | id 19 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴) | |
4 | 2, 3 | eqeq12d 2192 | . 2 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 · 1) = 𝐴)) |
5 | elsni 3612 | . . 3 ⊢ (𝑦 ∈ {0R} → 𝑦 = 0R) | |
6 | df-1 7821 | . . . . . . 7 ⊢ 1 = ⟨1R, 0R⟩ | |
7 | 6 | oveq2i 5888 | . . . . . 6 ⊢ (⟨𝑥, 0R⟩ · 1) = (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) |
8 | 1sr 7752 | . . . . . . . 8 ⊢ 1R ∈ R | |
9 | mulresr 7839 | . . . . . . . 8 ⊢ ((𝑥 ∈ R ∧ 1R ∈ R) → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩) | |
10 | 8, 9 | mpan2 425 | . . . . . . 7 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩) |
11 | 1idsr 7769 | . . . . . . . 8 ⊢ (𝑥 ∈ R → (𝑥 ·R 1R) = 𝑥) | |
12 | 11 | opeq1d 3786 | . . . . . . 7 ⊢ (𝑥 ∈ R → ⟨(𝑥 ·R 1R), 0R⟩ = ⟨𝑥, 0R⟩) |
13 | 10, 12 | eqtrd 2210 | . . . . . 6 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨𝑥, 0R⟩) |
14 | 7, 13 | eqtrid 2222 | . . . . 5 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩) |
15 | opeq2 3781 | . . . . . . 7 ⊢ (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩) | |
16 | 15 | oveq1d 5892 | . . . . . 6 ⊢ (𝑦 = 0R → (⟨𝑥, 𝑦⟩ · 1) = (⟨𝑥, 0R⟩ · 1)) |
17 | 16, 15 | eqeq12d 2192 | . . . . 5 ⊢ (𝑦 = 0R → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩)) |
18 | 14, 17 | imbitrrid 156 | . . . 4 ⊢ (𝑦 = 0R → (𝑥 ∈ R → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)) |
19 | 18 | impcom 125 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 = 0R) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩) |
20 | 5, 19 | sylan2 286 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ {0R}) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩) |
21 | 1, 4, 20 | optocl 4704 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 {csn 3594 ⟨cop 3597 (class class class)co 5877 Rcnr 7298 0Rc0r 7299 1Rc1r 7300 ·R cmr 7303 ℝcr 7812 1c1 7814 · cmul 7818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-enq0 7425 df-nq0 7426 df-0nq0 7427 df-plq0 7428 df-mq0 7429 df-inp 7467 df-i1p 7468 df-iplp 7469 df-imp 7470 df-enr 7727 df-nr 7728 df-plr 7729 df-mr 7730 df-0r 7732 df-1r 7733 df-m1r 7734 df-c 7819 df-1 7821 df-r 7823 df-mul 7825 |
This theorem is referenced by: rereceu 7890 recriota 7891 |
Copyright terms: Public domain | W3C validator |