Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecoptocl GIF version

Theorem ecoptocl 6556
 Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
ecoptocl.1 𝑆 = ((𝐵 × 𝐶) / 𝑅)
ecoptocl.2 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
ecoptocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
ecoptocl (𝐴𝑆𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem ecoptocl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6521 . . 3 (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅)
2 eqid 2154 . . . . 5 (𝐵 × 𝐶) = (𝐵 × 𝐶)
3 eceq1 6504 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝑧 → [⟨𝑥, 𝑦⟩]𝑅 = [𝑧]𝑅)
43eqeq2d 2166 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝑧 → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝐴 = [𝑧]𝑅))
54imbi1d 230 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝑧 → ((𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝜓) ↔ (𝐴 = [𝑧]𝑅𝜓)))
6 ecoptocl.3 . . . . . 6 ((𝑥𝐵𝑦𝐶) → 𝜑)
7 ecoptocl.2 . . . . . . 7 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
87eqcoms 2157 . . . . . 6 (𝐴 = [⟨𝑥, 𝑦⟩]𝑅 → (𝜑𝜓))
96, 8syl5ibcom 154 . . . . 5 ((𝑥𝐵𝑦𝐶) → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝜓))
102, 5, 9optocl 4655 . . . 4 (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅𝜓))
1110rexlimiv 2565 . . 3 (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅𝜓)
121, 11syl 14 . 2 (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓)
13 ecoptocl.1 . 2 𝑆 = ((𝐵 × 𝐶) / 𝑅)
1412, 13eleq2s 2249 1 (𝐴𝑆𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 2125  ∃wrex 2433  ⟨cop 3559   × cxp 4577  [cec 6467   / cqs 6468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-xp 4585  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-ec 6471  df-qs 6475 This theorem is referenced by:  2ecoptocl  6557  3ecoptocl  6558  mulidnq  7288  recexnq  7289  ltsonq  7297  distrnq0  7358  addassnq0  7361  ltposr  7662  0idsr  7666  1idsr  7667  00sr  7668  recexgt0sr  7672  archsr  7681  srpospr  7682  map2psrprg  7704
 Copyright terms: Public domain W3C validator