| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecoptocl | GIF version | ||
| Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecoptocl.1 | ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) |
| ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ecoptocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
| Ref | Expression |
|---|---|
| ecoptocl | ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6742 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅) | |
| 2 | eqid 2229 | . . . . 5 ⊢ (𝐵 × 𝐶) = (𝐵 × 𝐶) | |
| 3 | eceq1 6723 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → [〈𝑥, 𝑦〉]𝑅 = [𝑧]𝑅) | |
| 4 | 3 | eqeq2d 2241 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → (𝐴 = [〈𝑥, 𝑦〉]𝑅 ↔ 𝐴 = [𝑧]𝑅)) |
| 5 | 4 | imbi1d 231 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → ((𝐴 = [〈𝑥, 𝑦〉]𝑅 → 𝜓) ↔ (𝐴 = [𝑧]𝑅 → 𝜓))) |
| 6 | ecoptocl.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
| 7 | ecoptocl.2 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | eqcoms 2232 | . . . . . 6 ⊢ (𝐴 = [〈𝑥, 𝑦〉]𝑅 → (𝜑 ↔ 𝜓)) |
| 9 | 6, 8 | syl5ibcom 155 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝐴 = [〈𝑥, 𝑦〉]𝑅 → 𝜓)) |
| 10 | 2, 5, 9 | optocl 4795 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅 → 𝜓)) |
| 11 | 10 | rexlimiv 2642 | . . 3 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅 → 𝜓) |
| 12 | 1, 11 | syl 14 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓) |
| 13 | ecoptocl.1 | . 2 ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) | |
| 14 | 12, 13 | eleq2s 2324 | 1 ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 〈cop 3669 × cxp 4717 [cec 6686 / cqs 6687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-ec 6690 df-qs 6694 |
| This theorem is referenced by: 2ecoptocl 6778 3ecoptocl 6779 mulidnq 7584 recexnq 7585 ltsonq 7593 distrnq0 7654 addassnq0 7657 ltposr 7958 0idsr 7962 1idsr 7963 00sr 7964 recexgt0sr 7968 archsr 7977 srpospr 7978 map2psrprg 8000 |
| Copyright terms: Public domain | W3C validator |