![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecoptocl | GIF version |
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
ecoptocl.1 | ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) |
ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ecoptocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
Ref | Expression |
---|---|
ecoptocl | ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 6411 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅) | |
2 | eqid 2100 | . . . . 5 ⊢ (𝐵 × 𝐶) = (𝐵 × 𝐶) | |
3 | eceq1 6394 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → [〈𝑥, 𝑦〉]𝑅 = [𝑧]𝑅) | |
4 | 3 | eqeq2d 2111 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → (𝐴 = [〈𝑥, 𝑦〉]𝑅 ↔ 𝐴 = [𝑧]𝑅)) |
5 | 4 | imbi1d 230 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → ((𝐴 = [〈𝑥, 𝑦〉]𝑅 → 𝜓) ↔ (𝐴 = [𝑧]𝑅 → 𝜓))) |
6 | ecoptocl.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
7 | ecoptocl.2 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 7 | eqcoms 2103 | . . . . . 6 ⊢ (𝐴 = [〈𝑥, 𝑦〉]𝑅 → (𝜑 ↔ 𝜓)) |
9 | 6, 8 | syl5ibcom 154 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝐴 = [〈𝑥, 𝑦〉]𝑅 → 𝜓)) |
10 | 2, 5, 9 | optocl 4553 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅 → 𝜓)) |
11 | 10 | rexlimiv 2502 | . . 3 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅 → 𝜓) |
12 | 1, 11 | syl 14 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓) |
13 | ecoptocl.1 | . 2 ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) | |
14 | 12, 13 | eleq2s 2194 | 1 ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1299 ∈ wcel 1448 ∃wrex 2376 〈cop 3477 × cxp 4475 [cec 6357 / cqs 6358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-xp 4483 df-cnv 4485 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-ec 6361 df-qs 6365 |
This theorem is referenced by: 2ecoptocl 6447 3ecoptocl 6448 mulidnq 7098 recexnq 7099 ltsonq 7107 distrnq0 7168 addassnq0 7171 ltposr 7459 0idsr 7463 1idsr 7464 00sr 7465 recexgt0sr 7469 archsr 7477 srpospr 7478 |
Copyright terms: Public domain | W3C validator |