Proof of Theorem prdsvallem
| Step | Hyp | Ref
| Expression |
| 1 | | vex 2766 |
. 2
⊢ 𝑣 ∈ V |
| 2 | | fnmap 6723 |
. . . 4
⊢
↑𝑚 Fn (V × V) |
| 3 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑟 ∈ V |
| 4 | 3 | rnex 4934 |
. . . . . . . . 9
⊢ ran 𝑟 ∈ V |
| 5 | 4 | uniex 4473 |
. . . . . . . 8
⊢ ∪ ran 𝑟 ∈ V |
| 6 | 5 | rnex 4934 |
. . . . . . 7
⊢ ran ∪ ran 𝑟 ∈ V |
| 7 | 6 | uniex 4473 |
. . . . . 6
⊢ ∪ ran ∪ ran 𝑟 ∈ V |
| 8 | 7 | rnex 4934 |
. . . . 5
⊢ ran ∪ ran ∪ ran 𝑟 ∈ V |
| 9 | 8 | uniex 4473 |
. . . 4
⊢ ∪ ran ∪ ran ∪ ran 𝑟 ∈ V |
| 10 | 3 | dmex 4933 |
. . . 4
⊢ dom 𝑟 ∈ V |
| 11 | | fnovex 5958 |
. . . 4
⊢ ((
↑𝑚 Fn (V × V) ∧ ∪
ran ∪ ran ∪ ran 𝑟 ∈ V ∧ dom 𝑟 ∈ V) → (∪ ran ∪ ran ∪ ran 𝑟 ↑𝑚 dom 𝑟) ∈ V) |
| 12 | 2, 9, 10, 11 | mp3an 1348 |
. . 3
⊢ (∪ ran ∪ ran ∪ ran 𝑟 ↑𝑚 dom 𝑟) ∈ V |
| 13 | 12 | pwex 4217 |
. 2
⊢ 𝒫
(∪ ran ∪ ran ∪ ran 𝑟 ↑𝑚 dom 𝑟) ∈ V |
| 14 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
| 15 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 16 | 14, 15 | fvex 5581 |
. . . . . . . . 9
⊢ (𝑓‘𝑥) ∈ V |
| 17 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑔 ∈ V |
| 18 | 17, 15 | fvex 5581 |
. . . . . . . . 9
⊢ (𝑔‘𝑥) ∈ V |
| 19 | | ovssunirng 5960 |
. . . . . . . . 9
⊢ (((𝑓‘𝑥) ∈ V ∧ (𝑔‘𝑥) ∈ V) → ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
(Hom ‘(𝑟‘𝑥))) |
| 20 | 16, 18, 19 | mp2an 426 |
. . . . . . . 8
⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
(Hom ‘(𝑟‘𝑥)) |
| 21 | | homid 12936 |
. . . . . . . . . . . 12
⊢ Hom =
Slot (Hom ‘ndx) |
| 22 | 3, 15 | fvex 5581 |
. . . . . . . . . . . . 13
⊢ (𝑟‘𝑥) ∈ V |
| 23 | 22 | a1i 9 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑟‘𝑥) ∈ V) |
| 24 | | homslid 12937 |
. . . . . . . . . . . . . 14
⊢ (Hom =
Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ) |
| 25 | 24 | simpri 113 |
. . . . . . . . . . . . 13
⊢ (Hom
‘ndx) ∈ ℕ |
| 26 | 25 | a1i 9 |
. . . . . . . . . . . 12
⊢ (⊤
→ (Hom ‘ndx) ∈ ℕ) |
| 27 | 21, 23, 26 | strfvssn 12725 |
. . . . . . . . . . 11
⊢ (⊤
→ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran
(𝑟‘𝑥)) |
| 28 | 27 | mptru 1373 |
. . . . . . . . . 10
⊢ (Hom
‘(𝑟‘𝑥)) ⊆ ∪ ran (𝑟‘𝑥) |
| 29 | | fvssunirng 5576 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ V → (𝑟‘𝑥) ⊆ ∪ ran
𝑟) |
| 30 | 29 | elv 2767 |
. . . . . . . . . . 11
⊢ (𝑟‘𝑥) ⊆ ∪ ran
𝑟 |
| 31 | | rnss 4897 |
. . . . . . . . . . 11
⊢ ((𝑟‘𝑥) ⊆ ∪ ran
𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪
ran 𝑟) |
| 32 | | uniss 3861 |
. . . . . . . . . . 11
⊢ (ran
(𝑟‘𝑥) ⊆ ran ∪
ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran
∪ ran 𝑟) |
| 33 | 30, 31, 32 | mp2b 8 |
. . . . . . . . . 10
⊢ ∪ ran (𝑟‘𝑥) ⊆ ∪ ran
∪ ran 𝑟 |
| 34 | 28, 33 | sstri 3193 |
. . . . . . . . 9
⊢ (Hom
‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 |
| 35 | | rnss 4897 |
. . . . . . . . 9
⊢ ((Hom
‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 → ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪
ran ∪ ran 𝑟) |
| 36 | | uniss 3861 |
. . . . . . . . 9
⊢ (ran (Hom
‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟 → ∪ ran (Hom
‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟) |
| 37 | 34, 35, 36 | mp2b 8 |
. . . . . . . 8
⊢ ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑟 |
| 38 | 20, 37 | sstri 3193 |
. . . . . . 7
⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑟 |
| 39 | 38 | rgenw 2552 |
. . . . . 6
⊢
∀𝑥 ∈ dom
𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑟 |
| 40 | | ss2ixp 6779 |
. . . . . 6
⊢
(∀𝑥 ∈
dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑟 → X𝑥 ∈
dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟) |
| 41 | 39, 40 | ax-mp 5 |
. . . . 5
⊢ X𝑥 ∈
dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 |
| 42 | 10, 9 | ixpconst 6776 |
. . . . 5
⊢ X𝑥 ∈
dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 = (∪ ran ∪ ran ∪ ran 𝑟 ↑𝑚 dom 𝑟) |
| 43 | 41, 42 | sseqtri 3218 |
. . . 4
⊢ X𝑥 ∈
dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ (∪ ran
∪ ran ∪ ran 𝑟 ↑𝑚 dom
𝑟) |
| 44 | 12, 43 | elpwi2 4192 |
. . 3
⊢ X𝑥 ∈
dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑𝑚 dom 𝑟) |
| 45 | 44 | rgen2w 2553 |
. 2
⊢
∀𝑓 ∈
𝑣 ∀𝑔 ∈ 𝑣 X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑𝑚 dom 𝑟) |
| 46 | 1, 1, 13, 45 | mpoexw 6280 |
1
⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |