ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsvallem GIF version

Theorem prdsvallem 13313
Description: Lemma for prdsval 13314. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13314, dependency on df-hom 13142 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Distinct variable groups:   𝑥,𝑟   𝑓,𝑔,𝑟   𝑣,𝑓,𝑔

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 2802 . 2 𝑣 ∈ V
2 fnmap 6810 . . . 4 𝑚 Fn (V × V)
3 vex 2802 . . . . . . . . . 10 𝑟 ∈ V
43rnex 4992 . . . . . . . . 9 ran 𝑟 ∈ V
54uniex 4528 . . . . . . . 8 ran 𝑟 ∈ V
65rnex 4992 . . . . . . 7 ran ran 𝑟 ∈ V
76uniex 4528 . . . . . 6 ran ran 𝑟 ∈ V
87rnex 4992 . . . . 5 ran ran ran 𝑟 ∈ V
98uniex 4528 . . . 4 ran ran ran 𝑟 ∈ V
103dmex 4991 . . . 4 dom 𝑟 ∈ V
11 fnovex 6040 . . . 4 (( ↑𝑚 Fn (V × V) ∧ ran ran ran 𝑟 ∈ V ∧ dom 𝑟 ∈ V) → ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V)
122, 9, 10, 11mp3an 1371 . . 3 ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V
1312pwex 4267 . 2 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V
14 vex 2802 . . . . . . . . . 10 𝑓 ∈ V
15 vex 2802 . . . . . . . . . 10 𝑥 ∈ V
1614, 15fvex 5649 . . . . . . . . 9 (𝑓𝑥) ∈ V
17 vex 2802 . . . . . . . . . 10 𝑔 ∈ V
1817, 15fvex 5649 . . . . . . . . 9 (𝑔𝑥) ∈ V
19 ovssunirng 6042 . . . . . . . . 9 (((𝑓𝑥) ∈ V ∧ (𝑔𝑥) ∈ V) → ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥)))
2016, 18, 19mp2an 426 . . . . . . . 8 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥))
21 homid 13275 . . . . . . . . . . . 12 Hom = Slot (Hom ‘ndx)
223, 15fvex 5649 . . . . . . . . . . . . 13 (𝑟𝑥) ∈ V
2322a1i 9 . . . . . . . . . . . 12 (⊤ → (𝑟𝑥) ∈ V)
24 homslid 13276 . . . . . . . . . . . . . 14 (Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
2524simpri 113 . . . . . . . . . . . . 13 (Hom ‘ndx) ∈ ℕ
2625a1i 9 . . . . . . . . . . . 12 (⊤ → (Hom ‘ndx) ∈ ℕ)
2721, 23, 26strfvssn 13062 . . . . . . . . . . 11 (⊤ → (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥))
2827mptru 1404 . . . . . . . . . 10 (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥)
29 fvssunirng 5644 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝑟𝑥) ⊆ ran 𝑟)
3029elv 2803 . . . . . . . . . . 11 (𝑟𝑥) ⊆ ran 𝑟
31 rnss 4954 . . . . . . . . . . 11 ((𝑟𝑥) ⊆ ran 𝑟 → ran (𝑟𝑥) ⊆ ran ran 𝑟)
32 uniss 3909 . . . . . . . . . . 11 (ran (𝑟𝑥) ⊆ ran ran 𝑟 ran (𝑟𝑥) ⊆ ran ran 𝑟)
3330, 31, 32mp2b 8 . . . . . . . . . 10 ran (𝑟𝑥) ⊆ ran ran 𝑟
3428, 33sstri 3233 . . . . . . . . 9 (Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟
35 rnss 4954 . . . . . . . . 9 ((Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟 → ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
36 uniss 3909 . . . . . . . . 9 (ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
3734, 35, 36mp2b 8 . . . . . . . 8 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟
3820, 37sstri 3233 . . . . . . 7 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
3938rgenw 2585 . . . . . 6 𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
40 ss2ixp 6866 . . . . . 6 (∀𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟)
4139, 40ax-mp 5 . . . . 5 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟
4210, 9ixpconst 6863 . . . . 5 X𝑥 ∈ dom 𝑟 ran ran ran 𝑟 = ( ran ran ran 𝑟𝑚 dom 𝑟)
4341, 42sseqtri 3258 . . . 4 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ( ran ran ran 𝑟𝑚 dom 𝑟)
4412, 43elpwi2 4242 . . 3 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟)
4544rgen2w 2586 . 2 𝑓𝑣𝑔𝑣 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟)
461, 1, 13, 45mpoexw 6365 1 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wtru 1396  wcel 2200  wral 2508  Vcvv 2799  wss 3197  𝒫 cpw 3649   cuni 3888   × cxp 4717  dom cdm 4719  ran crn 4720   Fn wfn 5313  cfv 5318  (class class class)co 6007  cmpo 6009  𝑚 cmap 6803  Xcixp 6853  cn 9118  ndxcnx 13037  Slot cslot 13039  Hom chom 13129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-hom 13142
This theorem is referenced by:  prdsval  13314
  Copyright terms: Public domain W3C validator