ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsvallem GIF version

Theorem prdsvallem 12974
Description: Lemma for prdsval 12975. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 12975, dependency on df-hom 12804 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Distinct variable groups:   𝑥,𝑟   𝑓,𝑔,𝑟   𝑣,𝑓,𝑔

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 2766 . 2 𝑣 ∈ V
2 fnmap 6723 . . . 4 𝑚 Fn (V × V)
3 vex 2766 . . . . . . . . . 10 𝑟 ∈ V
43rnex 4934 . . . . . . . . 9 ran 𝑟 ∈ V
54uniex 4473 . . . . . . . 8 ran 𝑟 ∈ V
65rnex 4934 . . . . . . 7 ran ran 𝑟 ∈ V
76uniex 4473 . . . . . 6 ran ran 𝑟 ∈ V
87rnex 4934 . . . . 5 ran ran ran 𝑟 ∈ V
98uniex 4473 . . . 4 ran ran ran 𝑟 ∈ V
103dmex 4933 . . . 4 dom 𝑟 ∈ V
11 fnovex 5958 . . . 4 (( ↑𝑚 Fn (V × V) ∧ ran ran ran 𝑟 ∈ V ∧ dom 𝑟 ∈ V) → ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V)
122, 9, 10, 11mp3an 1348 . . 3 ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V
1312pwex 4217 . 2 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V
14 vex 2766 . . . . . . . . . 10 𝑓 ∈ V
15 vex 2766 . . . . . . . . . 10 𝑥 ∈ V
1614, 15fvex 5581 . . . . . . . . 9 (𝑓𝑥) ∈ V
17 vex 2766 . . . . . . . . . 10 𝑔 ∈ V
1817, 15fvex 5581 . . . . . . . . 9 (𝑔𝑥) ∈ V
19 ovssunirng 5960 . . . . . . . . 9 (((𝑓𝑥) ∈ V ∧ (𝑔𝑥) ∈ V) → ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥)))
2016, 18, 19mp2an 426 . . . . . . . 8 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥))
21 homid 12936 . . . . . . . . . . . 12 Hom = Slot (Hom ‘ndx)
223, 15fvex 5581 . . . . . . . . . . . . 13 (𝑟𝑥) ∈ V
2322a1i 9 . . . . . . . . . . . 12 (⊤ → (𝑟𝑥) ∈ V)
24 homslid 12937 . . . . . . . . . . . . . 14 (Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
2524simpri 113 . . . . . . . . . . . . 13 (Hom ‘ndx) ∈ ℕ
2625a1i 9 . . . . . . . . . . . 12 (⊤ → (Hom ‘ndx) ∈ ℕ)
2721, 23, 26strfvssn 12725 . . . . . . . . . . 11 (⊤ → (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥))
2827mptru 1373 . . . . . . . . . 10 (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥)
29 fvssunirng 5576 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝑟𝑥) ⊆ ran 𝑟)
3029elv 2767 . . . . . . . . . . 11 (𝑟𝑥) ⊆ ran 𝑟
31 rnss 4897 . . . . . . . . . . 11 ((𝑟𝑥) ⊆ ran 𝑟 → ran (𝑟𝑥) ⊆ ran ran 𝑟)
32 uniss 3861 . . . . . . . . . . 11 (ran (𝑟𝑥) ⊆ ran ran 𝑟 ran (𝑟𝑥) ⊆ ran ran 𝑟)
3330, 31, 32mp2b 8 . . . . . . . . . 10 ran (𝑟𝑥) ⊆ ran ran 𝑟
3428, 33sstri 3193 . . . . . . . . 9 (Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟
35 rnss 4897 . . . . . . . . 9 ((Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟 → ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
36 uniss 3861 . . . . . . . . 9 (ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
3734, 35, 36mp2b 8 . . . . . . . 8 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟
3820, 37sstri 3193 . . . . . . 7 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
3938rgenw 2552 . . . . . 6 𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
40 ss2ixp 6779 . . . . . 6 (∀𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟)
4139, 40ax-mp 5 . . . . 5 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟
4210, 9ixpconst 6776 . . . . 5 X𝑥 ∈ dom 𝑟 ran ran ran 𝑟 = ( ran ran ran 𝑟𝑚 dom 𝑟)
4341, 42sseqtri 3218 . . . 4 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ( ran ran ran 𝑟𝑚 dom 𝑟)
4412, 43elpwi2 4192 . . 3 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟)
4544rgen2w 2553 . 2 𝑓𝑣𝑔𝑣 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟)
461, 1, 13, 45mpoexw 6280 1 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wtru 1365  wcel 2167  wral 2475  Vcvv 2763  wss 3157  𝒫 cpw 3606   cuni 3840   × cxp 4662  dom cdm 4664  ran crn 4665   Fn wfn 5254  cfv 5259  (class class class)co 5925  cmpo 5927  𝑚 cmap 6716  Xcixp 6766  cn 9007  ndxcnx 12700  Slot cslot 12702  Hom chom 12791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sub 8216  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-dec 9475  df-ndx 12706  df-slot 12707  df-hom 12804
This theorem is referenced by:  prdsval  12975
  Copyright terms: Public domain W3C validator