ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsvallem GIF version

Theorem prdsvallem 13148
Description: Lemma for prdsval 13149. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13149, dependency on df-hom 12977 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Distinct variable groups:   𝑥,𝑟   𝑓,𝑔,𝑟   𝑣,𝑓,𝑔

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 2776 . 2 𝑣 ∈ V
2 fnmap 6749 . . . 4 𝑚 Fn (V × V)
3 vex 2776 . . . . . . . . . 10 𝑟 ∈ V
43rnex 4951 . . . . . . . . 9 ran 𝑟 ∈ V
54uniex 4488 . . . . . . . 8 ran 𝑟 ∈ V
65rnex 4951 . . . . . . 7 ran ran 𝑟 ∈ V
76uniex 4488 . . . . . 6 ran ran 𝑟 ∈ V
87rnex 4951 . . . . 5 ran ran ran 𝑟 ∈ V
98uniex 4488 . . . 4 ran ran ran 𝑟 ∈ V
103dmex 4950 . . . 4 dom 𝑟 ∈ V
11 fnovex 5984 . . . 4 (( ↑𝑚 Fn (V × V) ∧ ran ran ran 𝑟 ∈ V ∧ dom 𝑟 ∈ V) → ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V)
122, 9, 10, 11mp3an 1350 . . 3 ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V
1312pwex 4231 . 2 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V
14 vex 2776 . . . . . . . . . 10 𝑓 ∈ V
15 vex 2776 . . . . . . . . . 10 𝑥 ∈ V
1614, 15fvex 5603 . . . . . . . . 9 (𝑓𝑥) ∈ V
17 vex 2776 . . . . . . . . . 10 𝑔 ∈ V
1817, 15fvex 5603 . . . . . . . . 9 (𝑔𝑥) ∈ V
19 ovssunirng 5986 . . . . . . . . 9 (((𝑓𝑥) ∈ V ∧ (𝑔𝑥) ∈ V) → ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥)))
2016, 18, 19mp2an 426 . . . . . . . 8 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥))
21 homid 13110 . . . . . . . . . . . 12 Hom = Slot (Hom ‘ndx)
223, 15fvex 5603 . . . . . . . . . . . . 13 (𝑟𝑥) ∈ V
2322a1i 9 . . . . . . . . . . . 12 (⊤ → (𝑟𝑥) ∈ V)
24 homslid 13111 . . . . . . . . . . . . . 14 (Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
2524simpri 113 . . . . . . . . . . . . 13 (Hom ‘ndx) ∈ ℕ
2625a1i 9 . . . . . . . . . . . 12 (⊤ → (Hom ‘ndx) ∈ ℕ)
2721, 23, 26strfvssn 12898 . . . . . . . . . . 11 (⊤ → (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥))
2827mptru 1382 . . . . . . . . . 10 (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥)
29 fvssunirng 5598 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝑟𝑥) ⊆ ran 𝑟)
3029elv 2777 . . . . . . . . . . 11 (𝑟𝑥) ⊆ ran 𝑟
31 rnss 4913 . . . . . . . . . . 11 ((𝑟𝑥) ⊆ ran 𝑟 → ran (𝑟𝑥) ⊆ ran ran 𝑟)
32 uniss 3873 . . . . . . . . . . 11 (ran (𝑟𝑥) ⊆ ran ran 𝑟 ran (𝑟𝑥) ⊆ ran ran 𝑟)
3330, 31, 32mp2b 8 . . . . . . . . . 10 ran (𝑟𝑥) ⊆ ran ran 𝑟
3428, 33sstri 3203 . . . . . . . . 9 (Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟
35 rnss 4913 . . . . . . . . 9 ((Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟 → ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
36 uniss 3873 . . . . . . . . 9 (ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
3734, 35, 36mp2b 8 . . . . . . . 8 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟
3820, 37sstri 3203 . . . . . . 7 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
3938rgenw 2562 . . . . . 6 𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
40 ss2ixp 6805 . . . . . 6 (∀𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟)
4139, 40ax-mp 5 . . . . 5 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟
4210, 9ixpconst 6802 . . . . 5 X𝑥 ∈ dom 𝑟 ran ran ran 𝑟 = ( ran ran ran 𝑟𝑚 dom 𝑟)
4341, 42sseqtri 3228 . . . 4 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ( ran ran ran 𝑟𝑚 dom 𝑟)
4412, 43elpwi2 4206 . . 3 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟)
4544rgen2w 2563 . 2 𝑓𝑣𝑔𝑣 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟)
461, 1, 13, 45mpoexw 6306 1 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wtru 1374  wcel 2177  wral 2485  Vcvv 2773  wss 3167  𝒫 cpw 3617   cuni 3852   × cxp 4677  dom cdm 4679  ran crn 4680   Fn wfn 5271  cfv 5276  (class class class)co 5951  cmpo 5953  𝑚 cmap 6742  Xcixp 6792  cn 9043  ndxcnx 12873  Slot cslot 12875  Hom chom 12964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-sub 8252  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-dec 9512  df-ndx 12879  df-slot 12880  df-hom 12977
This theorem is referenced by:  prdsval  13149
  Copyright terms: Public domain W3C validator