ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsvallem GIF version

Theorem prdsvallem 13271
Description: Lemma for prdsval 13272. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13272, dependency on df-hom 13100 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Distinct variable groups:   𝑥,𝑟   𝑓,𝑔,𝑟   𝑣,𝑓,𝑔

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 2782 . 2 𝑣 ∈ V
2 fnmap 6772 . . . 4 𝑚 Fn (V × V)
3 vex 2782 . . . . . . . . . 10 𝑟 ∈ V
43rnex 4968 . . . . . . . . 9 ran 𝑟 ∈ V
54uniex 4505 . . . . . . . 8 ran 𝑟 ∈ V
65rnex 4968 . . . . . . 7 ran ran 𝑟 ∈ V
76uniex 4505 . . . . . 6 ran ran 𝑟 ∈ V
87rnex 4968 . . . . 5 ran ran ran 𝑟 ∈ V
98uniex 4505 . . . 4 ran ran ran 𝑟 ∈ V
103dmex 4967 . . . 4 dom 𝑟 ∈ V
11 fnovex 6007 . . . 4 (( ↑𝑚 Fn (V × V) ∧ ran ran ran 𝑟 ∈ V ∧ dom 𝑟 ∈ V) → ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V)
122, 9, 10, 11mp3an 1352 . . 3 ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V
1312pwex 4246 . 2 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟) ∈ V
14 vex 2782 . . . . . . . . . 10 𝑓 ∈ V
15 vex 2782 . . . . . . . . . 10 𝑥 ∈ V
1614, 15fvex 5623 . . . . . . . . 9 (𝑓𝑥) ∈ V
17 vex 2782 . . . . . . . . . 10 𝑔 ∈ V
1817, 15fvex 5623 . . . . . . . . 9 (𝑔𝑥) ∈ V
19 ovssunirng 6009 . . . . . . . . 9 (((𝑓𝑥) ∈ V ∧ (𝑔𝑥) ∈ V) → ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥)))
2016, 18, 19mp2an 426 . . . . . . . 8 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥))
21 homid 13233 . . . . . . . . . . . 12 Hom = Slot (Hom ‘ndx)
223, 15fvex 5623 . . . . . . . . . . . . 13 (𝑟𝑥) ∈ V
2322a1i 9 . . . . . . . . . . . 12 (⊤ → (𝑟𝑥) ∈ V)
24 homslid 13234 . . . . . . . . . . . . . 14 (Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
2524simpri 113 . . . . . . . . . . . . 13 (Hom ‘ndx) ∈ ℕ
2625a1i 9 . . . . . . . . . . . 12 (⊤ → (Hom ‘ndx) ∈ ℕ)
2721, 23, 26strfvssn 13020 . . . . . . . . . . 11 (⊤ → (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥))
2827mptru 1384 . . . . . . . . . 10 (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥)
29 fvssunirng 5618 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝑟𝑥) ⊆ ran 𝑟)
3029elv 2783 . . . . . . . . . . 11 (𝑟𝑥) ⊆ ran 𝑟
31 rnss 4930 . . . . . . . . . . 11 ((𝑟𝑥) ⊆ ran 𝑟 → ran (𝑟𝑥) ⊆ ran ran 𝑟)
32 uniss 3888 . . . . . . . . . . 11 (ran (𝑟𝑥) ⊆ ran ran 𝑟 ran (𝑟𝑥) ⊆ ran ran 𝑟)
3330, 31, 32mp2b 8 . . . . . . . . . 10 ran (𝑟𝑥) ⊆ ran ran 𝑟
3428, 33sstri 3213 . . . . . . . . 9 (Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟
35 rnss 4930 . . . . . . . . 9 ((Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟 → ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
36 uniss 3888 . . . . . . . . 9 (ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
3734, 35, 36mp2b 8 . . . . . . . 8 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟
3820, 37sstri 3213 . . . . . . 7 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
3938rgenw 2565 . . . . . 6 𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
40 ss2ixp 6828 . . . . . 6 (∀𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟)
4139, 40ax-mp 5 . . . . 5 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟
4210, 9ixpconst 6825 . . . . 5 X𝑥 ∈ dom 𝑟 ran ran ran 𝑟 = ( ran ran ran 𝑟𝑚 dom 𝑟)
4341, 42sseqtri 3238 . . . 4 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ( ran ran ran 𝑟𝑚 dom 𝑟)
4412, 43elpwi2 4221 . . 3 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟)
4544rgen2w 2566 . 2 𝑓𝑣𝑔𝑣 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟𝑚 dom 𝑟)
461, 1, 13, 45mpoexw 6329 1 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wtru 1376  wcel 2180  wral 2488  Vcvv 2779  wss 3177  𝒫 cpw 3629   cuni 3867   × cxp 4694  dom cdm 4696  ran crn 4697   Fn wfn 5289  cfv 5294  (class class class)co 5974  cmpo 5976  𝑚 cmap 6765  Xcixp 6815  cn 9078  ndxcnx 12995  Slot cslot 12997  Hom chom 13087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-hom 13100
This theorem is referenced by:  prdsval  13272
  Copyright terms: Public domain W3C validator