ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovexg GIF version

Theorem ovexg 5978
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
ovexg ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem ovexg
StepHypRef Expression
1 df-ov 5947 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 simp2 1001 . . 3 ((𝐴𝑉𝐹𝑊𝐵𝑋) → 𝐹𝑊)
3 opexg 4272 . . . 4 ((𝐴𝑉𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
433adant2 1019 . . 3 ((𝐴𝑉𝐹𝑊𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
5 fvexg 5595 . . 3 ((𝐹𝑊 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
62, 4, 5syl2anc 411 . 2 ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6eqeltrid 2292 1 ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981  wcel 2176  Vcvv 2772  cop 3636  cfv 5271  (class class class)co 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  mapxpen  6945  seq1g  10608  seqp1g  10611  seqclg  10617  seqm1g  10619  seqfeq4g  10676  prdsplusgfval  13116  prdsmulrfval  13118  imasex  13137  imasival  13138  imasbas  13139  imasplusg  13140  imasmulr  13141  imasaddfnlemg  13146  imasaddvallemg  13147  plusfvalg  13195  plusffng  13197  gsumsplit1r  13230  gsumprval  13231  gsumfzz  13327  gsumwsubmcl  13328  gsumfzcl  13331  grpsubval  13378  mulgval  13458  mulgfng  13460  mulgnngsum  13463  mulg1  13465  mulgnnp1  13466  mulgnndir  13487  subgintm  13534  subrngintm  13974  scafvalg  14069  scaffng  14071  rmodislmodlem  14112  rmodislmod  14113  lsssn0  14132  lss1d  14145  lssintclm  14146  ellspsn  14179  crngridl  14292  metrest  14978
  Copyright terms: Public domain W3C validator