![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovexg | GIF version |
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
Ref | Expression |
---|---|
ovexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5880 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
2 | simp2 998 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐹 ∈ 𝑊) | |
3 | opexg 4230 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → ⟨𝐴, 𝐵⟩ ∈ V) | |
4 | 3 | 3adant2 1016 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ⟨𝐴, 𝐵⟩ ∈ V) |
5 | fvexg 5536 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V) | |
6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V) |
7 | 1, 6 | eqeltrid 2264 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 ‘cfv 5218 (class class class)co 5877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-cnv 4636 df-dm 4638 df-rn 4639 df-iota 5180 df-fv 5226 df-ov 5880 |
This theorem is referenced by: mapxpen 6850 imasex 12731 imasival 12732 imasbas 12733 imasplusg 12734 imasmulr 12735 imasaddfnlemg 12740 imasaddvallemg 12741 plusfvalg 12787 plusffng 12789 grpsubval 12924 mulgval 12991 mulgfng 12992 mulg1 12995 mulgnnp1 12996 mulgnndir 13017 subgintm 13063 scafvalg 13402 scaffng 13404 rmodislmodlem 13445 rmodislmod 13446 lsssn0 13462 lss1d 13475 lssintclm 13476 lspsnel 13508 metrest 14091 |
Copyright terms: Public domain | W3C validator |