| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovexg | GIF version | ||
| Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| ovexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6003 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | simp2 1022 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐹 ∈ 𝑊) | |
| 3 | opexg 4313 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 3 | 3adant2 1040 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
| 5 | fvexg 5645 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
| 6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 7 | 1, 6 | eqeltrid 2316 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ‘cfv 5317 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: mapxpen 7005 seq1g 10680 seqp1g 10683 seqclg 10689 seqm1g 10691 seqfeq4g 10748 prdsplusgfval 13312 prdsmulrfval 13314 imasex 13333 imasival 13334 imasbas 13335 imasplusg 13336 imasmulr 13337 imasaddfnlemg 13342 imasaddvallemg 13343 plusfvalg 13391 plusffng 13393 gsumsplit1r 13426 gsumprval 13427 gsumfzz 13523 gsumwsubmcl 13524 gsumfzcl 13527 grpsubval 13574 mulgval 13654 mulgfng 13656 mulgnngsum 13659 mulg1 13661 mulgnnp1 13662 mulgnndir 13683 subgintm 13730 subrngintm 14170 scafvalg 14265 scaffng 14267 rmodislmodlem 14308 rmodislmod 14309 lsssn0 14328 lss1d 14341 lssintclm 14342 ellspsn 14375 crngridl 14488 metrest 15174 |
| Copyright terms: Public domain | W3C validator |