ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovexg GIF version

Theorem ovexg 5697
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
ovexg ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem ovexg
StepHypRef Expression
1 df-ov 5669 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 simp2 945 . . 3 ((𝐴𝑉𝐹𝑊𝐵𝑋) → 𝐹𝑊)
3 opexg 4064 . . . 4 ((𝐴𝑉𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
433adant2 963 . . 3 ((𝐴𝑉𝐹𝑊𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
5 fvexg 5337 . . 3 ((𝐹𝑊 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
62, 4, 5syl2anc 404 . 2 ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6syl5eqel 2175 1 ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 925  wcel 1439  Vcvv 2620  cop 3453  cfv 5028  (class class class)co 5666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-cnv 4460  df-dm 4462  df-rn 4463  df-iota 4993  df-fv 5036  df-ov 5669
This theorem is referenced by:  mapxpen  6618
  Copyright terms: Public domain W3C validator