ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovexg GIF version

Theorem ovexg 6034
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
ovexg ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem ovexg
StepHypRef Expression
1 df-ov 6003 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 simp2 1022 . . 3 ((𝐴𝑉𝐹𝑊𝐵𝑋) → 𝐹𝑊)
3 opexg 4313 . . . 4 ((𝐴𝑉𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
433adant2 1040 . . 3 ((𝐴𝑉𝐹𝑊𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
5 fvexg 5645 . . 3 ((𝐹𝑊 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
62, 4, 5syl2anc 411 . 2 ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6eqeltrid 2316 1 ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002  wcel 2200  Vcvv 2799  cop 3669  cfv 5317  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-cnv 4726  df-dm 4728  df-rn 4729  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  mapxpen  7005  seq1g  10680  seqp1g  10683  seqclg  10689  seqm1g  10691  seqfeq4g  10748  prdsplusgfval  13312  prdsmulrfval  13314  imasex  13333  imasival  13334  imasbas  13335  imasplusg  13336  imasmulr  13337  imasaddfnlemg  13342  imasaddvallemg  13343  plusfvalg  13391  plusffng  13393  gsumsplit1r  13426  gsumprval  13427  gsumfzz  13523  gsumwsubmcl  13524  gsumfzcl  13527  grpsubval  13574  mulgval  13654  mulgfng  13656  mulgnngsum  13659  mulg1  13661  mulgnnp1  13662  mulgnndir  13683  subgintm  13730  subrngintm  14170  scafvalg  14265  scaffng  14267  rmodislmodlem  14308  rmodislmod  14309  lsssn0  14328  lss1d  14341  lssintclm  14342  ellspsn  14375  crngridl  14488  metrest  15174
  Copyright terms: Public domain W3C validator