| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovexg | GIF version | ||
| Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| ovexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5928 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | simp2 1000 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐹 ∈ 𝑊) | |
| 3 | opexg 4262 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 3 | 3adant2 1018 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
| 5 | fvexg 5580 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
| 6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 7 | 1, 6 | eqeltrid 2283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 ∈ wcel 2167 Vcvv 2763 〈cop 3626 ‘cfv 5259 (class class class)co 5925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: mapxpen 6918 seq1g 10574 seqp1g 10577 seqclg 10583 seqm1g 10585 seqfeq4g 10642 prdsplusgfval 12988 prdsmulrfval 12990 imasex 13009 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 imasaddfnlemg 13018 imasaddvallemg 13019 plusfvalg 13067 plusffng 13069 gsumsplit1r 13102 gsumprval 13103 gsumfzz 13199 gsumwsubmcl 13200 gsumfzcl 13203 grpsubval 13250 mulgval 13330 mulgfng 13332 mulgnngsum 13335 mulg1 13337 mulgnnp1 13338 mulgnndir 13359 subgintm 13406 subrngintm 13846 scafvalg 13941 scaffng 13943 rmodislmodlem 13984 rmodislmod 13985 lsssn0 14004 lss1d 14017 lssintclm 14018 ellspsn 14051 crngridl 14164 metrest 14850 |
| Copyright terms: Public domain | W3C validator |