![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovexg | GIF version |
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
Ref | Expression |
---|---|
ovexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5921 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | simp2 1000 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐹 ∈ 𝑊) | |
3 | opexg 4257 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) | |
4 | 3 | 3adant2 1018 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
5 | fvexg 5573 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
7 | 1, 6 | eqeltrid 2280 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 ∈ wcel 2164 Vcvv 2760 〈cop 3621 ‘cfv 5254 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-cnv 4667 df-dm 4669 df-rn 4670 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: mapxpen 6904 seq1g 10534 seqp1g 10537 seqclg 10543 seqm1g 10545 seqfeq4g 10602 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 imasaddfnlemg 12897 imasaddvallemg 12898 plusfvalg 12946 plusffng 12948 gsumsplit1r 12981 gsumprval 12982 gsumfzz 13067 gsumwsubmcl 13068 gsumfzcl 13071 grpsubval 13118 mulgval 13192 mulgfng 13194 mulgnngsum 13197 mulg1 13199 mulgnnp1 13200 mulgnndir 13221 subgintm 13268 subrngintm 13708 scafvalg 13803 scaffng 13805 rmodislmodlem 13846 rmodislmod 13847 lsssn0 13866 lss1d 13879 lssintclm 13880 ellspsn 13913 crngridl 14026 metrest 14674 |
Copyright terms: Public domain | W3C validator |