| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovexg | GIF version | ||
| Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| ovexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5970 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | simp2 1001 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐹 ∈ 𝑊) | |
| 3 | opexg 4290 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 3 | 3adant2 1019 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
| 5 | fvexg 5618 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
| 6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 7 | 1, 6 | eqeltrid 2294 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 ∈ wcel 2178 Vcvv 2776 〈cop 3646 ‘cfv 5290 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-cnv 4701 df-dm 4703 df-rn 4704 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: mapxpen 6970 seq1g 10645 seqp1g 10648 seqclg 10654 seqm1g 10656 seqfeq4g 10713 prdsplusgfval 13231 prdsmulrfval 13233 imasex 13252 imasival 13253 imasbas 13254 imasplusg 13255 imasmulr 13256 imasaddfnlemg 13261 imasaddvallemg 13262 plusfvalg 13310 plusffng 13312 gsumsplit1r 13345 gsumprval 13346 gsumfzz 13442 gsumwsubmcl 13443 gsumfzcl 13446 grpsubval 13493 mulgval 13573 mulgfng 13575 mulgnngsum 13578 mulg1 13580 mulgnnp1 13581 mulgnndir 13602 subgintm 13649 subrngintm 14089 scafvalg 14184 scaffng 14186 rmodislmodlem 14227 rmodislmod 14228 lsssn0 14247 lss1d 14260 lssintclm 14261 ellspsn 14294 crngridl 14407 metrest 15093 |
| Copyright terms: Public domain | W3C validator |