![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovexg | GIF version |
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.) |
Ref | Expression |
---|---|
ovexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5922 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | simp2 1000 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 𝐹 ∈ 𝑊) | |
3 | opexg 4258 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) | |
4 | 3 | 3adant2 1018 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
5 | fvexg 5574 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
7 | 1, 6 | eqeltrid 2280 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 ∈ wcel 2164 Vcvv 2760 〈cop 3622 ‘cfv 5255 (class class class)co 5919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-cnv 4668 df-dm 4670 df-rn 4671 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: mapxpen 6906 seq1g 10537 seqp1g 10540 seqclg 10546 seqm1g 10548 seqfeq4g 10605 imasex 12891 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 imasaddfnlemg 12900 imasaddvallemg 12901 plusfvalg 12949 plusffng 12951 gsumsplit1r 12984 gsumprval 12985 gsumfzz 13070 gsumwsubmcl 13071 gsumfzcl 13074 grpsubval 13121 mulgval 13195 mulgfng 13197 mulgnngsum 13200 mulg1 13202 mulgnnp1 13203 mulgnndir 13224 subgintm 13271 subrngintm 13711 scafvalg 13806 scaffng 13808 rmodislmodlem 13849 rmodislmod 13850 lsssn0 13869 lss1d 13882 lssintclm 13883 ellspsn 13916 crngridl 14029 metrest 14685 |
Copyright terms: Public domain | W3C validator |