ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovexg GIF version

Theorem ovexg 5959
Description: Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
ovexg ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem ovexg
StepHypRef Expression
1 df-ov 5928 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 simp2 1000 . . 3 ((𝐴𝑉𝐹𝑊𝐵𝑋) → 𝐹𝑊)
3 opexg 4262 . . . 4 ((𝐴𝑉𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
433adant2 1018 . . 3 ((𝐴𝑉𝐹𝑊𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
5 fvexg 5580 . . 3 ((𝐹𝑊 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
62, 4, 5syl2anc 411 . 2 ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6eqeltrid 2283 1 ((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2167  Vcvv 2763  cop 3626  cfv 5259  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-cnv 4672  df-dm 4674  df-rn 4675  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  mapxpen  6918  seq1g  10574  seqp1g  10577  seqclg  10583  seqm1g  10585  seqfeq4g  10642  prdsplusgfval  12988  prdsmulrfval  12990  imasex  13009  imasival  13010  imasbas  13011  imasplusg  13012  imasmulr  13013  imasaddfnlemg  13018  imasaddvallemg  13019  plusfvalg  13067  plusffng  13069  gsumsplit1r  13102  gsumprval  13103  gsumfzz  13199  gsumwsubmcl  13200  gsumfzcl  13203  grpsubval  13250  mulgval  13330  mulgfng  13332  mulgnngsum  13335  mulg1  13337  mulgnnp1  13338  mulgnndir  13359  subgintm  13406  subrngintm  13846  scafvalg  13941  scaffng  13943  rmodislmodlem  13984  rmodislmod  13985  lsssn0  14004  lss1d  14017  lssintclm  14018  ellspsn  14051  crngridl  14164  metrest  14850
  Copyright terms: Public domain W3C validator