ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnq GIF version

Theorem ltbtwnnq 7559
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
ltbtwnnq (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnq
StepHypRef Expression
1 df-rex 2491 . 2 (∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥Q ∧ (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
2 ltbtwnnqq 7558 . 2 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
3 ltrelnq 7508 . . . . . . 7 <Q ⊆ (Q × Q)
43brel 4740 . . . . . 6 (𝐴 <Q 𝑥 → (𝐴Q𝑥Q))
54simprd 114 . . . . 5 (𝐴 <Q 𝑥𝑥Q)
65adantr 276 . . . 4 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝑥Q)
76pm4.71ri 392 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝑥Q ∧ (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
87exbii 1629 . 2 (∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥Q ∧ (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
91, 2, 83bitr4i 212 1 (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1516  wcel 2177  wrex 2486   class class class wbr 4054  Qcnq 7423   <Q cltq 7428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-eprel 4349  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-1o 6520  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-pli 7448  df-mi 7449  df-lti 7450  df-plpq 7487  df-mpq 7488  df-enq 7490  df-nqqs 7491  df-plqqs 7492  df-mqqs 7493  df-1nqqs 7494  df-rq 7495  df-ltnqqs 7496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator