| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltbtwnnq | GIF version | ||
| Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| ltbtwnnq | ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2491 | . 2 ⊢ (∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥 ∈ Q ∧ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) | |
| 2 | ltbtwnnqq 7558 | . 2 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | |
| 3 | ltrelnq 7508 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
| 4 | 3 | brel 4740 | . . . . . 6 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
| 5 | 4 | simprd 114 | . . . . 5 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵) → 𝑥 ∈ Q) |
| 7 | 6 | pm4.71ri 392 | . . 3 ⊢ ((𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵) ↔ (𝑥 ∈ Q ∧ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
| 8 | 7 | exbii 1629 | . 2 ⊢ (∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥 ∈ Q ∧ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
| 9 | 1, 2, 8 | 3bitr4i 212 | 1 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4054 Qcnq 7423 <Q cltq 7428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-eprel 4349 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-pli 7448 df-mi 7449 df-lti 7450 df-plpq 7487 df-mpq 7488 df-enq 7490 df-nqqs 7491 df-plqqs 7492 df-mqqs 7493 df-1nqqs 7494 df-rq 7495 df-ltnqqs 7496 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |