| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltbtwnnq | GIF version | ||
| Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| ltbtwnnq | ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2489 | . 2 ⊢ (∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥 ∈ Q ∧ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) | |
| 2 | ltbtwnnqq 7527 | . 2 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | |
| 3 | ltrelnq 7477 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
| 4 | 3 | brel 4726 | . . . . . 6 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
| 5 | 4 | simprd 114 | . . . . 5 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵) → 𝑥 ∈ Q) |
| 7 | 6 | pm4.71ri 392 | . . 3 ⊢ ((𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵) ↔ (𝑥 ∈ Q ∧ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
| 8 | 7 | exbii 1627 | . 2 ⊢ (∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥 ∈ Q ∧ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
| 9 | 1, 2, 8 | 3bitr4i 212 | 1 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1514 ∈ wcel 2175 ∃wrex 2484 class class class wbr 4043 Qcnq 7392 <Q cltq 7397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |