ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnq GIF version

Theorem ltbtwnnq 7599
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
ltbtwnnq (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnq
StepHypRef Expression
1 df-rex 2514 . 2 (∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥Q ∧ (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
2 ltbtwnnqq 7598 . 2 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
3 ltrelnq 7548 . . . . . . 7 <Q ⊆ (Q × Q)
43brel 4770 . . . . . 6 (𝐴 <Q 𝑥 → (𝐴Q𝑥Q))
54simprd 114 . . . . 5 (𝐴 <Q 𝑥𝑥Q)
65adantr 276 . . . 4 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝑥Q)
76pm4.71ri 392 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝑥Q ∧ (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
87exbii 1651 . 2 (∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥Q ∧ (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
91, 2, 83bitr4i 212 1 (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1538  wcel 2200  wrex 2509   class class class wbr 4082  Qcnq 7463   <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator