ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zrevaddcl GIF version

Theorem zrevaddcl 9128
Description: Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
zrevaddcl (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ))

Proof of Theorem zrevaddcl
StepHypRef Expression
1 zcn 9083 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 pncan 7992 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
31, 2sylan2 284 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
43ancoms 266 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
54adantr 274 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
6 zsubcl 9119 . . . . . . . 8 (((𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) ∈ ℤ)
76ancoms 266 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) ∈ ℤ)
87adantlr 469 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) ∈ ℤ)
95, 8eqeltrrd 2218 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) ∧ (𝑀 + 𝑁) ∈ ℤ) → 𝑀 ∈ ℤ)
109ex 114 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) → ((𝑀 + 𝑁) ∈ ℤ → 𝑀 ∈ ℤ))
11 zaddcl 9118 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
1211expcom 115 . . . . 5 (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ))
1312adantr 274 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ))
1410, 13impbid 128 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) → ((𝑀 + 𝑁) ∈ ℤ ↔ 𝑀 ∈ ℤ))
1514pm5.32da 448 . 2 (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ (𝑀 ∈ ℂ ∧ 𝑀 ∈ ℤ)))
16 zcn 9083 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1716pm4.71ri 390 . 2 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℂ ∧ 𝑀 ∈ ℤ))
1815, 17syl6bbr 197 1 (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  (class class class)co 5782  cc 7642   + caddc 7647  cmin 7957  cz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079
This theorem is referenced by:  eqreznegel  9433
  Copyright terms: Public domain W3C validator