| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qrevaddcl | GIF version | ||
| Description: Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| qrevaddcl | ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcn 9785 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
| 2 | pncan 8308 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
| 3 | 1, 2 | sylan2 286 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| 4 | 3 | ancoms 268 | . . . . . . 7 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| 5 | 4 | adantr 276 | . . . . . 6 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| 6 | qsubcl 9789 | . . . . . . . 8 ⊢ (((𝐴 + 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) | |
| 7 | 6 | ancoms 268 | . . . . . . 7 ⊢ ((𝐵 ∈ ℚ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) |
| 8 | 7 | adantlr 477 | . . . . . 6 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) |
| 9 | 5, 8 | eqeltrrd 2284 | . . . . 5 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → 𝐴 ∈ ℚ) |
| 10 | 9 | ex 115 | . . . 4 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) ∈ ℚ → 𝐴 ∈ ℚ)) |
| 11 | qaddcl 9786 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ) | |
| 12 | 11 | expcom 116 | . . . . 5 ⊢ (𝐵 ∈ ℚ → (𝐴 ∈ ℚ → (𝐴 + 𝐵) ∈ ℚ)) |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℚ → (𝐴 + 𝐵) ∈ ℚ)) |
| 14 | 10, 13 | impbid 129 | . . 3 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ)) |
| 15 | 14 | pm5.32da 452 | . 2 ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ))) |
| 16 | qcn 9785 | . . 3 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
| 17 | 16 | pm4.71ri 392 | . 2 ⊢ (𝐴 ∈ ℚ ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ)) |
| 18 | 15, 17 | bitr4di 198 | 1 ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 (class class class)co 5962 ℂcc 7953 + caddc 7958 − cmin 8273 ℚcq 9770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-n0 9326 df-z 9403 df-q 9771 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |