Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qrevaddcl | GIF version |
Description: Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
qrevaddcl | ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qcn 9580 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
2 | pncan 8112 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | |
3 | 1, 2 | sylan2 284 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
4 | 3 | ancoms 266 | . . . . . . 7 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
5 | 4 | adantr 274 | . . . . . 6 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
6 | qsubcl 9584 | . . . . . . . 8 ⊢ (((𝐴 + 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) | |
7 | 6 | ancoms 266 | . . . . . . 7 ⊢ ((𝐵 ∈ ℚ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) |
8 | 7 | adantlr 474 | . . . . . 6 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ) |
9 | 5, 8 | eqeltrrd 2248 | . . . . 5 ⊢ (((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) ∧ (𝐴 + 𝐵) ∈ ℚ) → 𝐴 ∈ ℚ) |
10 | 9 | ex 114 | . . . 4 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) ∈ ℚ → 𝐴 ∈ ℚ)) |
11 | qaddcl 9581 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ) | |
12 | 11 | expcom 115 | . . . . 5 ⊢ (𝐵 ∈ ℚ → (𝐴 ∈ ℚ → (𝐴 + 𝐵) ∈ ℚ)) |
13 | 12 | adantr 274 | . . . 4 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℚ → (𝐴 + 𝐵) ∈ ℚ)) |
14 | 10, 13 | impbid 128 | . . 3 ⊢ ((𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ)) |
15 | 14 | pm5.32da 449 | . 2 ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ))) |
16 | qcn 9580 | . . 3 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
17 | 16 | pm4.71ri 390 | . 2 ⊢ (𝐴 ∈ ℚ ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ)) |
18 | 15, 17 | bitr4di 197 | 1 ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 (class class class)co 5850 ℂcc 7759 + caddc 7764 − cmin 8077 ℚcq 9565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-n0 9123 df-z 9200 df-q 9566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |