| Step | Hyp | Ref
| Expression |
| 1 | | prdsval.p |
. 2
⊢ 𝑃 = (𝑆Xs𝑅) |
| 2 | | df-prds 12969 |
. . . 4
⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
| 3 | 2 | a1i 9 |
. . 3
⊢ (𝜑 → Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})))) |
| 4 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑟 ∈ V |
| 5 | 4 | rnex 4934 |
. . . . . . . . . . 11
⊢ ran 𝑟 ∈ V |
| 6 | 5 | uniex 4473 |
. . . . . . . . . 10
⊢ ∪ ran 𝑟 ∈ V |
| 7 | 6 | rnex 4934 |
. . . . . . . . 9
⊢ ran ∪ ran 𝑟 ∈ V |
| 8 | 7 | uniex 4473 |
. . . . . . . 8
⊢ ∪ ran ∪ ran 𝑟 ∈ V |
| 9 | | baseid 12757 |
. . . . . . . . . . . . 13
⊢ Base =
Slot (Base‘ndx) |
| 10 | | vex 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 11 | 4, 10 | fvex 5581 |
. . . . . . . . . . . . . 14
⊢ (𝑟‘𝑥) ∈ V |
| 12 | 11 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (𝑟‘𝑥) ∈ V) |
| 13 | | basendxnn 12759 |
. . . . . . . . . . . . . 14
⊢
(Base‘ndx) ∈ ℕ |
| 14 | 13 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (Base‘ndx) ∈ ℕ) |
| 15 | 9, 12, 14 | strfvssn 12725 |
. . . . . . . . . . . 12
⊢ (⊤
→ (Base‘(𝑟‘𝑥)) ⊆ ∪ ran
(𝑟‘𝑥)) |
| 16 | 15 | mptru 1373 |
. . . . . . . . . . 11
⊢
(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
(𝑟‘𝑥) |
| 17 | | fvssunirng 5576 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ V → (𝑟‘𝑥) ⊆ ∪ ran
𝑟) |
| 18 | 17 | elv 2767 |
. . . . . . . . . . . 12
⊢ (𝑟‘𝑥) ⊆ ∪ ran
𝑟 |
| 19 | | rnss 4897 |
. . . . . . . . . . . 12
⊢ ((𝑟‘𝑥) ⊆ ∪ ran
𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪
ran 𝑟) |
| 20 | | uniss 3861 |
. . . . . . . . . . . 12
⊢ (ran
(𝑟‘𝑥) ⊆ ran ∪
ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran
∪ ran 𝑟) |
| 21 | 18, 19, 20 | mp2b 8 |
. . . . . . . . . . 11
⊢ ∪ ran (𝑟‘𝑥) ⊆ ∪ ran
∪ ran 𝑟 |
| 22 | 16, 21 | sstri 3193 |
. . . . . . . . . 10
⊢
(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟 |
| 23 | 22 | rgenw 2552 |
. . . . . . . . 9
⊢
∀𝑥 ∈ dom
𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟 |
| 24 | | iunss 3958 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟 ↔ ∀𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟) |
| 25 | 23, 24 | mpbir 146 |
. . . . . . . 8
⊢ ∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ ∪ ran
∪ ran 𝑟 |
| 26 | 8, 25 | ssexi 4172 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V |
| 27 | | ixpssmap2g 6795 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V → X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑𝑚 dom 𝑟)) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . 6
⊢ X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑𝑚 dom 𝑟) |
| 29 | | fnmap 6723 |
. . . . . . . 8
⊢
↑𝑚 Fn (V × V) |
| 30 | 4 | dmex 4933 |
. . . . . . . 8
⊢ dom 𝑟 ∈ V |
| 31 | | fnovex 5958 |
. . . . . . . 8
⊢ ((
↑𝑚 Fn (V × V) ∧ ∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V ∧ dom 𝑟 ∈ V) → (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑𝑚 dom 𝑟) ∈ V) |
| 32 | 29, 26, 30, 31 | mp3an 1348 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑𝑚 dom 𝑟) ∈ V |
| 33 | 32 | ssex 4171 |
. . . . . 6
⊢ (X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ⊆ (∪ 𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ↑𝑚 dom 𝑟) → X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V) |
| 34 | 28, 33 | mp1i 10 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∈ V) |
| 35 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
| 36 | 35 | fveq1d 5563 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑟‘𝑥) = (𝑅‘𝑥)) |
| 37 | 36 | fveq2d 5565 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Base‘(𝑟‘𝑥)) = (Base‘(𝑅‘𝑥))) |
| 38 | 37 | ixpeq2dv 6782 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ 𝐼 (Base‘(𝑟‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
| 39 | 35 | dmeqd 4869 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅) |
| 40 | | prdsval.i |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑅 = 𝐼) |
| 41 | 40 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑅 = 𝐼) |
| 42 | 39, 41 | eqtrd 2229 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = 𝐼) |
| 43 | 42 | ixpeq1d 6778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘(𝑟‘𝑥))) |
| 44 | | prdsval.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
| 45 | 44 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
| 46 | 38, 43, 45 | 3eqtr4d 2239 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = 𝐵) |
| 47 | | prdsvallem 12974 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
| 48 | 47 | a1i 9 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V) |
| 49 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) |
| 50 | 42 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → dom 𝑟 = 𝐼) |
| 51 | 50 | ixpeq1d 6778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) |
| 52 | 36 | fveq2d 5565 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Hom ‘(𝑟‘𝑥)) = (Hom ‘(𝑅‘𝑥))) |
| 53 | 52 | oveqd 5942 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 54 | 53 | ixpeq2dv 6782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 55 | 54 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 56 | 51, 55 | eqtrd 2229 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) = X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 57 | 49, 49, 56 | mpoeq123dv 5988 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 58 | | prdsval.h |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 59 | 58 | ad3antrrr 492 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 60 | 57, 59 | eqtr4d 2232 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) = 𝐻) |
| 61 | | simplr 528 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑣 = 𝐵) |
| 62 | 61 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(Base‘ndx), 𝑣〉 = 〈(Base‘ndx),
𝐵〉) |
| 63 | 36 | fveq2d 5565 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (+g‘(𝑟‘𝑥)) = (+g‘(𝑅‘𝑥))) |
| 64 | 63 | oveqd 5942 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 65 | 42, 64 | mpteq12dv 4116 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 66 | 65 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 67 | 49, 49, 66 | mpoeq123dv 5988 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 68 | 67 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 69 | | prdsval.a |
. . . . . . . . . . . 12
⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 70 | 69 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 71 | 68, 70 | eqtr4d 2232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) = + ) |
| 72 | 71 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(+g‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 = 〈(+g‘ndx),
+
〉) |
| 73 | 36 | fveq2d 5565 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (.r‘(𝑟‘𝑥)) = (.r‘(𝑅‘𝑥))) |
| 74 | 73 | oveqd 5942 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 75 | 42, 74 | mpteq12dv 4116 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 76 | 75 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 77 | 49, 49, 76 | mpoeq123dv 5988 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 78 | 77 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 79 | | prdsval.t |
. . . . . . . . . . . 12
⊢ (𝜑 → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 80 | 79 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 81 | 78, 80 | eqtr4d 2232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) = × ) |
| 82 | 81 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 = 〈(.r‘ndx),
×
〉) |
| 83 | 62, 72, 82 | tpeq123d 3715 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ×
〉}) |
| 84 | | simp-4r 542 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑠 = 𝑆) |
| 85 | 84 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(Scalar‘ndx), 𝑠〉 =
〈(Scalar‘ndx), 𝑆〉) |
| 86 | | simpllr 534 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑠 = 𝑆) |
| 87 | 86 | fveq2d 5565 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = (Base‘𝑆)) |
| 88 | | prdsval.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (Base‘𝑆) |
| 89 | 87, 88 | eqtr4di 2247 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = 𝐾) |
| 90 | 36 | fveq2d 5565 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (
·𝑠 ‘(𝑟‘𝑥)) = ( ·𝑠
‘(𝑅‘𝑥))) |
| 91 | 90 | oveqd 5942 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)) = (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 92 | 42, 91 | mpteq12dv 4116 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 93 | 92 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 94 | 89, 49, 93 | mpoeq123dv 5988 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 95 | 94 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 96 | | prdsval.m |
. . . . . . . . . . . 12
⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 97 | 96 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 98 | 95, 97 | eqtr4d 2232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)))) = · ) |
| 99 | 98 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 = 〈(
·𝑠 ‘ndx), ·
〉) |
| 100 | 36 | fveq2d 5565 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) →
(·𝑖‘(𝑟‘𝑥)) =
(·𝑖‘(𝑅‘𝑥))) |
| 101 | 100 | oveqd 5942 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 102 | 42, 101 | mpteq12dv 4116 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 103 | 102 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 104 | 86, 103 | oveq12d 5943 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))) = (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 105 | 49, 49, 104 | mpoeq123dv 5988 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
| 106 | 105 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
| 107 | | prdsval.j |
. . . . . . . . . . . 12
⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
| 108 | 107 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
| 109 | 106, 108 | eqtr4d 2232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) = , ) |
| 110 | 109 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) →
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉 =
〈(·𝑖‘ndx), , 〉) |
| 111 | 85, 99, 110 | tpeq123d 3715 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈(Scalar‘ndx), 𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉} = {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) |
| 112 | 83, 111 | uneq12d 3319 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
| 113 | | simpllr 534 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑟 = 𝑅) |
| 114 | 113 | coeq2d 4829 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (TopOpen ∘ 𝑟) = (TopOpen ∘ 𝑅)) |
| 115 | 114 | fveq2d 5565 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (∏t‘(TopOpen
∘ 𝑟)) =
(∏t‘(TopOpen ∘ 𝑅))) |
| 116 | | prdsval.o |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen
∘ 𝑅))) |
| 117 | 116 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝑂 = (∏t‘(TopOpen
∘ 𝑅))) |
| 118 | 115, 117 | eqtr4d 2232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (∏t‘(TopOpen
∘ 𝑟)) = 𝑂) |
| 119 | 118 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉 = 〈(TopSet‘ndx), 𝑂〉) |
| 120 | 49 | sseq2d 3214 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ({𝑓, 𝑔} ⊆ 𝑣 ↔ {𝑓, 𝑔} ⊆ 𝐵)) |
| 121 | 36 | fveq2d 5565 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (le‘(𝑟‘𝑥)) = (le‘(𝑅‘𝑥))) |
| 122 | 121 | breqd 4045 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 123 | 42, 122 | raleqbidv 2709 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 124 | 123 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) ↔ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 125 | 120, 124 | anbi12d 473 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 126 | 125 | opabbidv 4100 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
| 127 | 126 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
| 128 | | prdsval.l |
. . . . . . . . . . . 12
⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
| 129 | 128 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
| 130 | 127, 129 | eqtr4d 2232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} = ≤ ) |
| 131 | 130 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉 = 〈(le‘ndx), ≤
〉) |
| 132 | 36 | fveq2d 5565 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (dist‘(𝑟‘𝑥)) = (dist‘(𝑅‘𝑥))) |
| 133 | 132 | oveqd 5942 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 134 | 42, 133 | mpteq12dv 4116 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 135 | 134 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 136 | 135 | rneqd 4896 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) = ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 137 | 136 | uneq1d 3317 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0})) |
| 138 | 137 | supeq1d 7062 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ) =
sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
| 139 | 49, 49, 138 | mpoeq123dv 5988 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
| 140 | 139 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
| 141 | | prdsval.d |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
| 142 | 141 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
| 143 | 140, 142 | eqtr4d 2232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= 𝐷) |
| 144 | 143 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉 = 〈(dist‘ndx), 𝐷〉) |
| 145 | 119, 131,
144 | tpeq123d 3715 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} = {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}) |
| 146 | | simpr 110 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ℎ = 𝐻) |
| 147 | 146 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(Hom ‘ndx), ℎ〉 = 〈(Hom ‘ndx),
𝐻〉) |
| 148 | 61 | sqxpeqd 4690 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑣 × 𝑣) = (𝐵 × 𝐵)) |
| 149 | 146 | oveqd 5942 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ((2nd ‘𝑎)ℎ𝑐) = ((2nd ‘𝑎)𝐻𝑐)) |
| 150 | 146 | fveq1d 5563 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (ℎ‘𝑎) = (𝐻‘𝑎)) |
| 151 | 36 | fveq2d 5565 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (comp‘(𝑟‘𝑥)) = (comp‘(𝑅‘𝑥))) |
| 152 | 151 | oveqd 5942 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (〈((1st
‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥)) = (〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))) |
| 153 | 152 | oveqd 5942 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)) = ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) |
| 154 | 42, 153 | mpteq12dv 4116 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))) |
| 155 | 154 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))) |
| 156 | 149, 150,
155 | mpoeq123dv 5988 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))) = (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) |
| 157 | 148, 61, 156 | mpoeq123dv 5988 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
| 158 | | prdsval.x |
. . . . . . . . . . . 12
⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
| 159 | 158 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
| 160 | 157, 159 | eqtr4d 2232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = ∙ ) |
| 161 | 160 | opeq2d 3816 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉 = 〈(comp‘ndx), ∙
〉) |
| 162 | 147, 161 | preq12d 3708 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx),
(𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉} = {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}) |
| 163 | 145, 162 | uneq12d 3319 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}) = ({〈(TopSet‘ndx),
𝑂〉,
〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉})) |
| 164 | 112, 163 | uneq12d 3319 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ ℎ = 𝐻) → (({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}
∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉}))) |
| 165 | 48, 60, 164 | csbied2 3132 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}
∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉}))) |
| 166 | 34, 46, 165 | csbied2 3132 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}
∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉}))) |
| 167 | 166 | anasss 399 |
. . 3
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑟 = 𝑅)) → ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}
∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉}))) |
| 168 | | prdsval.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| 169 | 168 | elexd 2776 |
. . 3
⊢ (𝜑 → 𝑆 ∈ V) |
| 170 | | prdsval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| 171 | 170 | elexd 2776 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
| 172 | | dmexg 4931 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑍 → dom 𝑅 ∈ V) |
| 173 | 170, 172 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑅 ∈ V) |
| 174 | 40, 173 | eqeltrrd 2274 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ V) |
| 175 | | basfn 12761 |
. . . . . . . . . . 11
⊢ Base Fn
V |
| 176 | | fvexg 5580 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ 𝑍 ∧ 𝑥 ∈ V) → (𝑅‘𝑥) ∈ V) |
| 177 | 170, 10, 176 | sylancl 413 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅‘𝑥) ∈ V) |
| 178 | | funfvex 5578 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ (𝑅‘𝑥) ∈ dom Base) →
(Base‘(𝑅‘𝑥)) ∈ V) |
| 179 | 178 | funfni 5361 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ (𝑅‘𝑥) ∈ V) →
(Base‘(𝑅‘𝑥)) ∈ V) |
| 180 | 175, 177,
179 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘(𝑅‘𝑥)) ∈ V) |
| 181 | 180 | ralrimivw 2571 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
| 182 | | ixpexgg 6790 |
. . . . . . . . 9
⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∈ V) → X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
| 183 | 174, 181,
182 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
| 184 | 44, 183 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
| 185 | | opexg 4262 |
. . . . . . 7
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → 〈(Base‘ndx),
𝐵〉 ∈
V) |
| 186 | 13, 184, 185 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → 〈(Base‘ndx),
𝐵〉 ∈
V) |
| 187 | | plusgndxnn 12814 |
. . . . . . 7
⊢
(+g‘ndx) ∈ ℕ |
| 188 | | mpoexga 6279 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 189 | 184, 184,
188 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 190 | 69, 189 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → + ∈ V) |
| 191 | | opexg 4262 |
. . . . . . 7
⊢
(((+g‘ndx) ∈ ℕ ∧ + ∈ V) →
〈(+g‘ndx), + 〉 ∈
V) |
| 192 | 187, 190,
191 | sylancr 414 |
. . . . . 6
⊢ (𝜑 →
〈(+g‘ndx), + 〉 ∈
V) |
| 193 | | mulrslid 12834 |
. . . . . . . 8
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
| 194 | 193 | simpri 113 |
. . . . . . 7
⊢
(.r‘ndx) ∈ ℕ |
| 195 | | mpoexga 6279 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 196 | 184, 184,
195 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 197 | 79, 196 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → × ∈
V) |
| 198 | | opexg 4262 |
. . . . . . 7
⊢
(((.r‘ndx) ∈ ℕ ∧ × ∈ V) →
〈(.r‘ndx), × 〉 ∈
V) |
| 199 | 194, 197,
198 | sylancr 414 |
. . . . . 6
⊢ (𝜑 →
〈(.r‘ndx), × 〉 ∈
V) |
| 200 | | tpexg 4480 |
. . . . . 6
⊢
((〈(Base‘ndx), 𝐵〉 ∈ V ∧
〈(+g‘ndx), + 〉 ∈ V ∧
〈(.r‘ndx), × 〉 ∈ V)
→ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∈
V) |
| 201 | 186, 192,
199, 200 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∈
V) |
| 202 | | scaslid 12855 |
. . . . . . . 8
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
| 203 | 202 | simpri 113 |
. . . . . . 7
⊢
(Scalar‘ndx) ∈ ℕ |
| 204 | | opexg 4262 |
. . . . . . 7
⊢
(((Scalar‘ndx) ∈ ℕ ∧ 𝑆 ∈ 𝑊) → 〈(Scalar‘ndx), 𝑆〉 ∈
V) |
| 205 | 203, 168,
204 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → 〈(Scalar‘ndx),
𝑆〉 ∈
V) |
| 206 | | vscaslid 12865 |
. . . . . . . 8
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
| 207 | 206 | simpri 113 |
. . . . . . 7
⊢ (
·𝑠 ‘ndx) ∈ ℕ |
| 208 | | funfvex 5578 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
| 209 | 208 | funfni 5361 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
| 210 | 175, 169,
209 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑆) ∈ V) |
| 211 | 88, 210 | eqeltrid 2283 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ V) |
| 212 | | mpoexga 6279 |
. . . . . . . . 9
⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 213 | 211, 184,
212 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 214 | 96, 213 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → · ∈
V) |
| 215 | | opexg 4262 |
. . . . . . 7
⊢ (((
·𝑠 ‘ndx) ∈ ℕ ∧ · ∈
V) → 〈( ·𝑠 ‘ndx), · 〉
∈ V) |
| 216 | 207, 214,
215 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → 〈(
·𝑠 ‘ndx), · 〉 ∈
V) |
| 217 | | ipslid 12873 |
. . . . . . . 8
⊢
(·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
| 218 | 217 | simpri 113 |
. . . . . . 7
⊢
(·𝑖‘ndx) ∈
ℕ |
| 219 | | mpoexga 6279 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) ∈ V) |
| 220 | 184, 184,
219 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) ∈ V) |
| 221 | 107, 220 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → , ∈ V) |
| 222 | | opexg 4262 |
. . . . . . 7
⊢
(((·𝑖‘ndx) ∈ ℕ ∧
, ∈
V) → 〈(·𝑖‘ndx), , 〉 ∈
V) |
| 223 | 218, 221,
222 | sylancr 414 |
. . . . . 6
⊢ (𝜑 →
〈(·𝑖‘ndx), , 〉 ∈
V) |
| 224 | | tpexg 4480 |
. . . . . 6
⊢
((〈(Scalar‘ndx), 𝑆〉 ∈ V ∧ 〈(
·𝑠 ‘ndx), · 〉 ∈ V
∧ 〈(·𝑖‘ndx), , 〉 ∈ V) →
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉} ∈
V) |
| 225 | 205, 216,
223, 224 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉} ∈
V) |
| 226 | | unexg 4479 |
. . . . 5
⊢
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∈ V
∧ {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉} ∈ V) →
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∈
V) |
| 227 | 201, 225,
226 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∈
V) |
| 228 | | tsetndxnn 12891 |
. . . . . . 7
⊢
(TopSet‘ndx) ∈ ℕ |
| 229 | | topnfn 12946 |
. . . . . . . . . . 11
⊢ TopOpen
Fn V |
| 230 | | fnfun 5356 |
. . . . . . . . . . 11
⊢ (TopOpen
Fn V → Fun TopOpen) |
| 231 | 229, 230 | ax-mp 5 |
. . . . . . . . . 10
⊢ Fun
TopOpen |
| 232 | | cofunexg 6175 |
. . . . . . . . . 10
⊢ ((Fun
TopOpen ∧ 𝑅 ∈
𝑍) → (TopOpen ∘
𝑅) ∈
V) |
| 233 | 231, 170,
232 | sylancr 414 |
. . . . . . . . 9
⊢ (𝜑 → (TopOpen ∘ 𝑅) ∈ V) |
| 234 | | ptex 12966 |
. . . . . . . . 9
⊢ ((TopOpen
∘ 𝑅) ∈ V →
(∏t‘(TopOpen ∘ 𝑅)) ∈ V) |
| 235 | 233, 234 | syl 14 |
. . . . . . . 8
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) ∈ V) |
| 236 | 116, 235 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ V) |
| 237 | | opexg 4262 |
. . . . . . 7
⊢
(((TopSet‘ndx) ∈ ℕ ∧ 𝑂 ∈ V) → 〈(TopSet‘ndx),
𝑂〉 ∈
V) |
| 238 | 228, 236,
237 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → 〈(TopSet‘ndx),
𝑂〉 ∈
V) |
| 239 | | plendxnn 12905 |
. . . . . . 7
⊢
(le‘ndx) ∈ ℕ |
| 240 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑓 ∈ V |
| 241 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑔 ∈ V |
| 242 | 240, 241 | prss 3779 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵) |
| 243 | 242 | anbi1i 458 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 244 | 243 | opabbii 4101 |
. . . . . . . . 9
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} |
| 245 | | xpexg 4778 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝐵 × 𝐵) ∈ V) |
| 246 | 184, 184,
245 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
| 247 | | opabssxp 4738 |
. . . . . . . . . . 11
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ⊆ (𝐵 × 𝐵) |
| 248 | 247 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ⊆ (𝐵 × 𝐵)) |
| 249 | 246, 248 | ssexd 4174 |
. . . . . . . . 9
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ∈ V) |
| 250 | 244, 249 | eqeltrrid 2284 |
. . . . . . . 8
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ∈ V) |
| 251 | 128, 250 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → ≤ ∈
V) |
| 252 | | opexg 4262 |
. . . . . . 7
⊢
(((le‘ndx) ∈ ℕ ∧ ≤ ∈ V) →
〈(le‘ndx), ≤ 〉 ∈
V) |
| 253 | 239, 251,
252 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → 〈(le‘ndx),
≤
〉 ∈ V) |
| 254 | | dsndxnn 12920 |
. . . . . . 7
⊢
(dist‘ndx) ∈ ℕ |
| 255 | | mpoexga 6279 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
∈ V) |
| 256 | 184, 184,
255 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
∈ V) |
| 257 | 141, 256 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ V) |
| 258 | | opexg 4262 |
. . . . . . 7
⊢
(((dist‘ndx) ∈ ℕ ∧ 𝐷 ∈ V) → 〈(dist‘ndx),
𝐷〉 ∈
V) |
| 259 | 254, 257,
258 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → 〈(dist‘ndx),
𝐷〉 ∈
V) |
| 260 | | tpexg 4480 |
. . . . . 6
⊢
((〈(TopSet‘ndx), 𝑂〉 ∈ V ∧ 〈(le‘ndx),
≤
〉 ∈ V ∧ 〈(dist‘ndx), 𝐷〉 ∈ V) →
{〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∈ V) |
| 261 | 238, 253,
259, 260 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → {〈(TopSet‘ndx),
𝑂〉,
〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∈ V) |
| 262 | | homslid 12937 |
. . . . . . . 8
⊢ (Hom =
Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ) |
| 263 | 262 | simpri 113 |
. . . . . . 7
⊢ (Hom
‘ndx) ∈ ℕ |
| 264 | | mpoexga 6279 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ V) |
| 265 | 184, 184,
264 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ V) |
| 266 | 58, 265 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ V) |
| 267 | | opexg 4262 |
. . . . . . 7
⊢ (((Hom
‘ndx) ∈ ℕ ∧ 𝐻 ∈ V) → 〈(Hom ‘ndx),
𝐻〉 ∈
V) |
| 268 | 263, 266,
267 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → 〈(Hom ‘ndx),
𝐻〉 ∈
V) |
| 269 | | ccoslid 12940 |
. . . . . . . 8
⊢ (comp =
Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ) |
| 270 | 269 | simpri 113 |
. . . . . . 7
⊢
(comp‘ndx) ∈ ℕ |
| 271 | | mpoexga 6279 |
. . . . . . . . 9
⊢ (((𝐵 × 𝐵) ∈ V ∧ 𝐵 ∈ V) → (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) ∈ V) |
| 272 | 246, 184,
271 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) ∈ V) |
| 273 | 158, 272 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → ∙ ∈
V) |
| 274 | | opexg 4262 |
. . . . . . 7
⊢
(((comp‘ndx) ∈ ℕ ∧ ∙ ∈ V) →
〈(comp‘ndx), ∙ 〉 ∈
V) |
| 275 | 270, 273,
274 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → 〈(comp‘ndx),
∙
〉 ∈ V) |
| 276 | | prexg 4245 |
. . . . . 6
⊢
((〈(Hom ‘ndx), 𝐻〉 ∈ V ∧
〈(comp‘ndx), ∙ 〉 ∈ V)
→ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙
〉} ∈ V) |
| 277 | 268, 275,
276 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → {〈(Hom ‘ndx),
𝐻〉,
〈(comp‘ndx), ∙ 〉} ∈
V) |
| 278 | | unexg 4479 |
. . . . 5
⊢
(({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∈ V ∧ {〈(Hom
‘ndx), 𝐻〉,
〈(comp‘ndx), ∙ 〉} ∈ V)
→ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}) ∈ V) |
| 279 | 261, 277,
278 | syl2anc 411 |
. . . 4
⊢ (𝜑 →
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}) ∈ V) |
| 280 | | unexg 4479 |
. . . 4
⊢
((({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∈ V ∧
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}) ∈ V) → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉})) ∈ V) |
| 281 | 227, 279,
280 | syl2anc 411 |
. . 3
⊢ (𝜑 → (({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉})) ∈ V) |
| 282 | 3, 167, 169, 171, 281 | ovmpod 6054 |
. 2
⊢ (𝜑 → (𝑆Xs𝑅) = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}))) |
| 283 | 1, 282 | eqtrid 2241 |
1
⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∪
({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
∙
〉}))) |