ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsval GIF version

Theorem prdsval 13314
Description: Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsval.p 𝑃 = (𝑆Xs𝑅)
prdsval.k 𝐾 = (Base‘𝑆)
prdsval.i (𝜑 → dom 𝑅 = 𝐼)
prdsval.b (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
prdsval.a (𝜑+ = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
prdsval.t (𝜑× = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
prdsval.m (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
prdsval.j (𝜑, = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
prdsval.o (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
prdsval.l (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
prdsval.d (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
prdsval.h (𝜑𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
prdsval.x (𝜑 = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
prdsval.s (𝜑𝑆𝑊)
prdsval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
prdsval (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝐵   𝐻,𝑎,𝑐,𝑑,𝑒   𝑥,𝑎,𝜑,𝑐,𝑑,𝑒,𝑓,𝑔   𝑥,𝐼   𝑅,𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝑥   𝑆,𝑎,𝑐,𝑑,𝑒,𝑓,𝑔,𝑥   𝑓,𝐾,𝑔
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑃(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   + (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   · (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   × (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐻(𝑥,𝑓,𝑔)   , (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐼(𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝐾(𝑥,𝑒,𝑎,𝑐,𝑑)   (𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑂(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑊(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)   𝑍(𝑥,𝑒,𝑓,𝑔,𝑎,𝑐,𝑑)

Proof of Theorem prdsval
Dummy variables 𝑟 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsval.p . 2 𝑃 = (𝑆Xs𝑅)
2 df-prds 13308 . . . 4 Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
32a1i 9 . . 3 (𝜑Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))))
4 vex 2802 . . . . . . . . . . . 12 𝑟 ∈ V
54rnex 4992 . . . . . . . . . . 11 ran 𝑟 ∈ V
65uniex 4528 . . . . . . . . . 10 ran 𝑟 ∈ V
76rnex 4992 . . . . . . . . 9 ran ran 𝑟 ∈ V
87uniex 4528 . . . . . . . 8 ran ran 𝑟 ∈ V
9 baseid 13094 . . . . . . . . . . . . 13 Base = Slot (Base‘ndx)
10 vex 2802 . . . . . . . . . . . . . . 15 𝑥 ∈ V
114, 10fvex 5649 . . . . . . . . . . . . . 14 (𝑟𝑥) ∈ V
1211a1i 9 . . . . . . . . . . . . 13 (⊤ → (𝑟𝑥) ∈ V)
13 basendxnn 13096 . . . . . . . . . . . . . 14 (Base‘ndx) ∈ ℕ
1413a1i 9 . . . . . . . . . . . . 13 (⊤ → (Base‘ndx) ∈ ℕ)
159, 12, 14strfvssn 13062 . . . . . . . . . . . 12 (⊤ → (Base‘(𝑟𝑥)) ⊆ ran (𝑟𝑥))
1615mptru 1404 . . . . . . . . . . 11 (Base‘(𝑟𝑥)) ⊆ ran (𝑟𝑥)
17 fvssunirng 5644 . . . . . . . . . . . . 13 (𝑥 ∈ V → (𝑟𝑥) ⊆ ran 𝑟)
1817elv 2803 . . . . . . . . . . . 12 (𝑟𝑥) ⊆ ran 𝑟
19 rnss 4954 . . . . . . . . . . . 12 ((𝑟𝑥) ⊆ ran 𝑟 → ran (𝑟𝑥) ⊆ ran ran 𝑟)
20 uniss 3909 . . . . . . . . . . . 12 (ran (𝑟𝑥) ⊆ ran ran 𝑟 ran (𝑟𝑥) ⊆ ran ran 𝑟)
2118, 19, 20mp2b 8 . . . . . . . . . . 11 ran (𝑟𝑥) ⊆ ran ran 𝑟
2216, 21sstri 3233 . . . . . . . . . 10 (Base‘(𝑟𝑥)) ⊆ ran ran 𝑟
2322rgenw 2585 . . . . . . . . 9 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ran ran 𝑟
24 iunss 4006 . . . . . . . . 9 ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ran ran 𝑟 ↔ ∀𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ran ran 𝑟)
2523, 24mpbir 146 . . . . . . . 8 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ran ran 𝑟
268, 25ssexi 4222 . . . . . . 7 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V
27 ixpssmap2g 6882 . . . . . . 7 ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑𝑚 dom 𝑟))
2826, 27ax-mp 5 . . . . . 6 X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑𝑚 dom 𝑟)
29 fnmap 6810 . . . . . . . 8 𝑚 Fn (V × V)
304dmex 4991 . . . . . . . 8 dom 𝑟 ∈ V
31 fnovex 6040 . . . . . . . 8 (( ↑𝑚 Fn (V × V) ∧ 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V ∧ dom 𝑟 ∈ V) → ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑𝑚 dom 𝑟) ∈ V)
3229, 26, 30, 31mp3an 1371 . . . . . . 7 ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑𝑚 dom 𝑟) ∈ V
3332ssex 4221 . . . . . 6 (X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ⊆ ( 𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ↑𝑚 dom 𝑟) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V)
3428, 33mp1i 10 . . . . 5 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∈ V)
35 simpr 110 . . . . . . . . 9 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
3635fveq1d 5631 . . . . . . . 8 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
3736fveq2d 5633 . . . . . . 7 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Base‘(𝑟𝑥)) = (Base‘(𝑅𝑥)))
3837ixpeq2dv 6869 . . . . . 6 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥𝐼 (Base‘(𝑟𝑥)) = X𝑥𝐼 (Base‘(𝑅𝑥)))
3935dmeqd 4925 . . . . . . . 8 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
40 prdsval.i . . . . . . . . 9 (𝜑 → dom 𝑅 = 𝐼)
4140ad2antrr 488 . . . . . . . 8 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑅 = 𝐼)
4239, 41eqtrd 2262 . . . . . . 7 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → dom 𝑟 = 𝐼)
4342ixpeq1d 6865 . . . . . 6 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = X𝑥𝐼 (Base‘(𝑟𝑥)))
44 prdsval.b . . . . . . 7 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
4544ad2antrr 488 . . . . . 6 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → 𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
4638, 43, 453eqtr4d 2272 . . . . 5 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = 𝐵)
47 prdsvallem 13313 . . . . . . 7 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
4847a1i 9 . . . . . 6 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V)
49 simpr 110 . . . . . . . 8 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵)
5042adantr 276 . . . . . . . . . 10 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → dom 𝑟 = 𝐼)
5150ixpeq1d 6865 . . . . . . . . 9 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)))
5236fveq2d 5633 . . . . . . . . . . . 12 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (Hom ‘(𝑟𝑥)) = (Hom ‘(𝑅𝑥)))
5352oveqd 6024 . . . . . . . . . . 11 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
5453ixpeq2dv 6869 . . . . . . . . . 10 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
5554adantr 276 . . . . . . . . 9 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
5651, 55eqtrd 2262 . . . . . . . 8 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
5749, 49, 56mpoeq123dv 6072 . . . . . . 7 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
58 prdsval.h . . . . . . . 8 (𝜑𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
5958ad3antrrr 492 . . . . . . 7 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
6057, 59eqtr4d 2265 . . . . . 6 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) = 𝐻)
61 simplr 528 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝑣 = 𝐵)
6261opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(Base‘ndx), 𝑣⟩ = ⟨(Base‘ndx), 𝐵⟩)
6336fveq2d 5633 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (+g‘(𝑟𝑥)) = (+g‘(𝑅𝑥)))
6463oveqd 6024 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))
6542, 64mpteq12dv 4166 . . . . . . . . . . . . . 14 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))
6665adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))
6749, 49, 66mpoeq123dv 6072 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
6867adantr 276 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
69 prdsval.a . . . . . . . . . . . 12 (𝜑+ = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
7069ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
7168, 70eqtr4d 2265 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)))) = + )
7271opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨(+g‘ndx), + ⟩)
7336fveq2d 5633 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (.r‘(𝑟𝑥)) = (.r‘(𝑅𝑥)))
7473oveqd 6024 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))
7542, 74mpteq12dv 4166 . . . . . . . . . . . . . 14 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))
7675adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))
7749, 49, 76mpoeq123dv 6072 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
7877adantr 276 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
79 prdsval.t . . . . . . . . . . . 12 (𝜑× = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
8079ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → × = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
8178, 80eqtr4d 2265 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)))) = × )
8281opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨(.r‘ndx), × ⟩)
8362, 72, 82tpeq123d 3758 . . . . . . . 8 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩})
84 simp-4r 542 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝑠 = 𝑆)
8584opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(Scalar‘ndx), 𝑠⟩ = ⟨(Scalar‘ndx), 𝑆⟩)
86 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → 𝑠 = 𝑆)
8786fveq2d 5633 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = (Base‘𝑆))
88 prdsval.k . . . . . . . . . . . . . 14 𝐾 = (Base‘𝑆)
8987, 88eqtr4di 2280 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (Base‘𝑠) = 𝐾)
9036fveq2d 5633 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ( ·𝑠 ‘(𝑟𝑥)) = ( ·𝑠 ‘(𝑅𝑥)))
9190oveqd 6024 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)) = (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))
9242, 91mpteq12dv 4166 . . . . . . . . . . . . . 14 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))
9392adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))
9489, 49, 93mpoeq123dv 6072 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
9594adantr 276 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
96 prdsval.m . . . . . . . . . . . 12 (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
9796ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → · = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
9895, 97eqtr4d 2265 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)))) = · )
9998opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
10036fveq2d 5633 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (·𝑖‘(𝑟𝑥)) = (·𝑖‘(𝑅𝑥)))
101100oveqd 6024 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))
10242, 101mpteq12dv 4166 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))
103102adantr 276 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))
10486, 103oveq12d 6025 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))) = (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))
10549, 49, 104mpoeq123dv 6072 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
106105adantr 276 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
107 prdsval.j . . . . . . . . . . . 12 (𝜑, = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
108107ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → , = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
109106, 108eqtr4d 2265 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))))) = , )
110109opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩ = ⟨(·𝑖‘ndx), , ⟩)
11185, 99, 110tpeq123d 3758 . . . . . . . 8 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩} = {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
11283, 111uneq12d 3359 . . . . . . 7 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
113 simpllr 534 . . . . . . . . . . . . 13 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝑟 = 𝑅)
114113coeq2d 4884 . . . . . . . . . . . 12 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (TopOpen ∘ 𝑟) = (TopOpen ∘ 𝑅))
115114fveq2d 5633 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (∏t‘(TopOpen ∘ 𝑟)) = (∏t‘(TopOpen ∘ 𝑅)))
116 prdsval.o . . . . . . . . . . . 12 (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
117116ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
118115, 117eqtr4d 2265 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (∏t‘(TopOpen ∘ 𝑟)) = 𝑂)
119118opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩ = ⟨(TopSet‘ndx), 𝑂⟩)
12049sseq2d 3254 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ({𝑓, 𝑔} ⊆ 𝑣 ↔ {𝑓, 𝑔} ⊆ 𝐵))
12136fveq2d 5633 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (le‘(𝑟𝑥)) = (le‘(𝑅𝑥)))
122121breqd 4094 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥) ↔ (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
12342, 122raleqbidv 2744 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
124123adantr 276 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
125120, 124anbi12d 473 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))))
126125opabbidv 4150 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
127126adantr 276 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
128 prdsval.l . . . . . . . . . . . 12 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
129128ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
130127, 129eqtr4d 2265 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))} = )
131130opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩ = ⟨(le‘ndx), ⟩)
13236fveq2d 5633 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (dist‘(𝑟𝑥)) = (dist‘(𝑅𝑥)))
133132oveqd 6024 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)))
13442, 133mpteq12dv 4166 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))))
135134adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))))
136135rneqd 4953 . . . . . . . . . . . . . . 15 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) = ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))))
137136uneq1d 3357 . . . . . . . . . . . . . 14 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}))
138137supeq1d 7162 . . . . . . . . . . . . 13 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
13949, 49, 138mpoeq123dv 6072 . . . . . . . . . . . 12 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
140139adantr 276 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
141 prdsval.d . . . . . . . . . . . 12 (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
142141ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → 𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
143140, 142eqtr4d 2265 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = 𝐷)
144143opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩ = ⟨(dist‘ndx), 𝐷⟩)
145119, 131, 144tpeq123d 3758 . . . . . . . 8 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} = {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩})
146 simpr 110 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → = 𝐻)
147146opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(Hom ‘ndx), ⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
14861sqxpeqd 4745 . . . . . . . . . . . 12 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑣 × 𝑣) = (𝐵 × 𝐵))
149146oveqd 6024 . . . . . . . . . . . . 13 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ((2nd𝑎)𝑐) = ((2nd𝑎)𝐻𝑐))
150146fveq1d 5631 . . . . . . . . . . . . 13 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑎) = (𝐻𝑎))
15136fveq2d 5633 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (comp‘(𝑟𝑥)) = (comp‘(𝑅𝑥)))
152151oveqd 6024 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥)) = (⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥)))
153152oveqd 6024 . . . . . . . . . . . . . . 15 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)) = ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))
15442, 153mpteq12dv 4166 . . . . . . . . . . . . . 14 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))) = (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))
155154ad2antrr 488 . . . . . . . . . . . . 13 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))) = (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))
156149, 150, 155mpoeq123dv 6072 . . . . . . . . . . . 12 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))) = (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))
157148, 61, 156mpoeq123dv 6072 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
158 prdsval.x . . . . . . . . . . . 12 (𝜑 = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
159158ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
160157, 159eqtr4d 2265 . . . . . . . . . 10 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))))) = )
161160opeq2d 3864 . . . . . . . . 9 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩ = ⟨(comp‘ndx), ⟩)
162147, 161preq12d 3751 . . . . . . . 8 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩} = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})
163145, 162uneq12d 3359 . . . . . . 7 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}) = ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}))
164112, 163uneq12d 3359 . . . . . 6 (((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) ∧ = 𝐻) → (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
16548, 60, 164csbied2 3172 . . . . 5 ((((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) ∧ 𝑣 = 𝐵) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
16634, 46, 165csbied2 3172 . . . 4 (((𝜑𝑠 = 𝑆) ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
167166anasss 399 . . 3 ((𝜑 ∧ (𝑠 = 𝑆𝑟 = 𝑅)) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
168 prdsval.s . . . 4 (𝜑𝑆𝑊)
169168elexd 2813 . . 3 (𝜑𝑆 ∈ V)
170 prdsval.r . . . 4 (𝜑𝑅𝑍)
171170elexd 2813 . . 3 (𝜑𝑅 ∈ V)
172 dmexg 4988 . . . . . . . . . . 11 (𝑅𝑍 → dom 𝑅 ∈ V)
173170, 172syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑅 ∈ V)
17440, 173eqeltrrd 2307 . . . . . . . . 9 (𝜑𝐼 ∈ V)
175 basfn 13099 . . . . . . . . . . 11 Base Fn V
176 fvexg 5648 . . . . . . . . . . . 12 ((𝑅𝑍𝑥 ∈ V) → (𝑅𝑥) ∈ V)
177170, 10, 176sylancl 413 . . . . . . . . . . 11 (𝜑 → (𝑅𝑥) ∈ V)
178 funfvex 5646 . . . . . . . . . . . 12 ((Fun Base ∧ (𝑅𝑥) ∈ dom Base) → (Base‘(𝑅𝑥)) ∈ V)
179178funfni 5423 . . . . . . . . . . 11 ((Base Fn V ∧ (𝑅𝑥) ∈ V) → (Base‘(𝑅𝑥)) ∈ V)
180175, 177, 179sylancr 414 . . . . . . . . . 10 (𝜑 → (Base‘(𝑅𝑥)) ∈ V)
181180ralrimivw 2604 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
182 ixpexgg 6877 . . . . . . . . 9 ((𝐼 ∈ V ∧ ∀𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V) → X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
183174, 181, 182syl2anc 411 . . . . . . . 8 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
18444, 183eqeltrd 2306 . . . . . . 7 (𝜑𝐵 ∈ V)
185 opexg 4314 . . . . . . 7 (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
18613, 184, 185sylancr 414 . . . . . 6 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
187 plusgndxnn 13152 . . . . . . 7 (+g‘ndx) ∈ ℕ
188 mpoexga 6364 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
189184, 184, 188syl2anc 411 . . . . . . . 8 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
19069, 189eqeltrd 2306 . . . . . . 7 (𝜑+ ∈ V)
191 opexg 4314 . . . . . . 7 (((+g‘ndx) ∈ ℕ ∧ + ∈ V) → ⟨(+g‘ndx), + ⟩ ∈ V)
192187, 190, 191sylancr 414 . . . . . 6 (𝜑 → ⟨(+g‘ndx), + ⟩ ∈ V)
193 mulrslid 13173 . . . . . . . 8 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
194193simpri 113 . . . . . . 7 (.r‘ndx) ∈ ℕ
195 mpoexga 6364 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
196184, 184, 195syl2anc 411 . . . . . . . 8 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
19779, 196eqeltrd 2306 . . . . . . 7 (𝜑× ∈ V)
198 opexg 4314 . . . . . . 7 (((.r‘ndx) ∈ ℕ ∧ × ∈ V) → ⟨(.r‘ndx), × ⟩ ∈ V)
199194, 197, 198sylancr 414 . . . . . 6 (𝜑 → ⟨(.r‘ndx), × ⟩ ∈ V)
200 tpexg 4535 . . . . . 6 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(+g‘ndx), + ⟩ ∈ V ∧ ⟨(.r‘ndx), × ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∈ V)
201186, 192, 199, 200syl3anc 1271 . . . . 5 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∈ V)
202 scaslid 13194 . . . . . . . 8 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
203202simpri 113 . . . . . . 7 (Scalar‘ndx) ∈ ℕ
204 opexg 4314 . . . . . . 7 (((Scalar‘ndx) ∈ ℕ ∧ 𝑆𝑊) → ⟨(Scalar‘ndx), 𝑆⟩ ∈ V)
205203, 168, 204sylancr 414 . . . . . 6 (𝜑 → ⟨(Scalar‘ndx), 𝑆⟩ ∈ V)
206 vscaslid 13204 . . . . . . . 8 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
207206simpri 113 . . . . . . 7 ( ·𝑠 ‘ndx) ∈ ℕ
208 funfvex 5646 . . . . . . . . . . . 12 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
209208funfni 5423 . . . . . . . . . . 11 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
210175, 169, 209sylancr 414 . . . . . . . . . 10 (𝜑 → (Base‘𝑆) ∈ V)
21188, 210eqeltrid 2316 . . . . . . . . 9 (𝜑𝐾 ∈ V)
212 mpoexga 6364 . . . . . . . . 9 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
213211, 184, 212syl2anc 411 . . . . . . . 8 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
21496, 213eqeltrd 2306 . . . . . . 7 (𝜑· ∈ V)
215 opexg 4314 . . . . . . 7 ((( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ V) → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ V)
216207, 214, 215sylancr 414 . . . . . 6 (𝜑 → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ V)
217 ipslid 13212 . . . . . . . 8 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
218217simpri 113 . . . . . . 7 (·𝑖‘ndx) ∈ ℕ
219 mpoexga 6364 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) ∈ V)
220184, 184, 219syl2anc 411 . . . . . . . 8 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) ∈ V)
221107, 220eqeltrd 2306 . . . . . . 7 (𝜑, ∈ V)
222 opexg 4314 . . . . . . 7 (((·𝑖‘ndx) ∈ ℕ ∧ , ∈ V) → ⟨(·𝑖‘ndx), , ⟩ ∈ V)
223218, 221, 222sylancr 414 . . . . . 6 (𝜑 → ⟨(·𝑖‘ndx), , ⟩ ∈ V)
224 tpexg 4535 . . . . . 6 ((⟨(Scalar‘ndx), 𝑆⟩ ∈ V ∧ ⟨( ·𝑠 ‘ndx), · ⟩ ∈ V ∧ ⟨(·𝑖‘ndx), , ⟩ ∈ V) → {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩} ∈ V)
225205, 216, 223, 224syl3anc 1271 . . . . 5 (𝜑 → {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩} ∈ V)
226 unexg 4534 . . . . 5 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∈ V ∧ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩} ∈ V) → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∈ V)
227201, 225, 226syl2anc 411 . . . 4 (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∈ V)
228 tsetndxnn 13230 . . . . . . 7 (TopSet‘ndx) ∈ ℕ
229 topnfn 13285 . . . . . . . . . . 11 TopOpen Fn V
230 fnfun 5418 . . . . . . . . . . 11 (TopOpen Fn V → Fun TopOpen)
231229, 230ax-mp 5 . . . . . . . . . 10 Fun TopOpen
232 cofunexg 6260 . . . . . . . . . 10 ((Fun TopOpen ∧ 𝑅𝑍) → (TopOpen ∘ 𝑅) ∈ V)
233231, 170, 232sylancr 414 . . . . . . . . 9 (𝜑 → (TopOpen ∘ 𝑅) ∈ V)
234 ptex 13305 . . . . . . . . 9 ((TopOpen ∘ 𝑅) ∈ V → (∏t‘(TopOpen ∘ 𝑅)) ∈ V)
235233, 234syl 14 . . . . . . . 8 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) ∈ V)
236116, 235eqeltrd 2306 . . . . . . 7 (𝜑𝑂 ∈ V)
237 opexg 4314 . . . . . . 7 (((TopSet‘ndx) ∈ ℕ ∧ 𝑂 ∈ V) → ⟨(TopSet‘ndx), 𝑂⟩ ∈ V)
238228, 236, 237sylancr 414 . . . . . 6 (𝜑 → ⟨(TopSet‘ndx), 𝑂⟩ ∈ V)
239 plendxnn 13244 . . . . . . 7 (le‘ndx) ∈ ℕ
240 vex 2802 . . . . . . . . . . . 12 𝑓 ∈ V
241 vex 2802 . . . . . . . . . . . 12 𝑔 ∈ V
242240, 241prss 3824 . . . . . . . . . . 11 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
243242anbi1i 458 . . . . . . . . . 10 (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
244243opabbii 4151 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}
245 xpexg 4833 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝐵 × 𝐵) ∈ V)
246184, 184, 245syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝐵 × 𝐵) ∈ V)
247 opabssxp 4793 . . . . . . . . . . 11 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ⊆ (𝐵 × 𝐵)
248247a1i 9 . . . . . . . . . 10 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ⊆ (𝐵 × 𝐵))
249246, 248ssexd 4224 . . . . . . . . 9 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ∈ V)
250244, 249eqeltrrid 2317 . . . . . . . 8 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ∈ V)
251128, 250eqeltrd 2306 . . . . . . 7 (𝜑 ∈ V)
252 opexg 4314 . . . . . . 7 (((le‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(le‘ndx), ⟩ ∈ V)
253239, 251, 252sylancr 414 . . . . . 6 (𝜑 → ⟨(le‘ndx), ⟩ ∈ V)
254 dsndxnn 13259 . . . . . . 7 (dist‘ndx) ∈ ℕ
255 mpoexga 6364 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) ∈ V)
256184, 184, 255syl2anc 411 . . . . . . . 8 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) ∈ V)
257141, 256eqeltrd 2306 . . . . . . 7 (𝜑𝐷 ∈ V)
258 opexg 4314 . . . . . . 7 (((dist‘ndx) ∈ ℕ ∧ 𝐷 ∈ V) → ⟨(dist‘ndx), 𝐷⟩ ∈ V)
259254, 257, 258sylancr 414 . . . . . 6 (𝜑 → ⟨(dist‘ndx), 𝐷⟩ ∈ V)
260 tpexg 4535 . . . . . 6 ((⟨(TopSet‘ndx), 𝑂⟩ ∈ V ∧ ⟨(le‘ndx), ⟩ ∈ V ∧ ⟨(dist‘ndx), 𝐷⟩ ∈ V) → {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∈ V)
261238, 253, 259, 260syl3anc 1271 . . . . 5 (𝜑 → {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∈ V)
262 homslid 13276 . . . . . . . 8 (Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
263262simpri 113 . . . . . . 7 (Hom ‘ndx) ∈ ℕ
264 mpoexga 6364 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) ∈ V)
265184, 184, 264syl2anc 411 . . . . . . . 8 (𝜑 → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) ∈ V)
26658, 265eqeltrd 2306 . . . . . . 7 (𝜑𝐻 ∈ V)
267 opexg 4314 . . . . . . 7 (((Hom ‘ndx) ∈ ℕ ∧ 𝐻 ∈ V) → ⟨(Hom ‘ndx), 𝐻⟩ ∈ V)
268263, 266, 267sylancr 414 . . . . . 6 (𝜑 → ⟨(Hom ‘ndx), 𝐻⟩ ∈ V)
269 ccoslid 13279 . . . . . . . 8 (comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ)
270269simpri 113 . . . . . . 7 (comp‘ndx) ∈ ℕ
271 mpoexga 6364 . . . . . . . . 9 (((𝐵 × 𝐵) ∈ V ∧ 𝐵 ∈ V) → (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) ∈ V)
272246, 184, 271syl2anc 411 . . . . . . . 8 (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) ∈ V)
273158, 272eqeltrd 2306 . . . . . . 7 (𝜑 ∈ V)
274 opexg 4314 . . . . . . 7 (((comp‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(comp‘ndx), ⟩ ∈ V)
275270, 273, 274sylancr 414 . . . . . 6 (𝜑 → ⟨(comp‘ndx), ⟩ ∈ V)
276 prexg 4295 . . . . . 6 ((⟨(Hom ‘ndx), 𝐻⟩ ∈ V ∧ ⟨(comp‘ndx), ⟩ ∈ V) → {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩} ∈ V)
277268, 275, 276syl2anc 411 . . . . 5 (𝜑 → {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩} ∈ V)
278 unexg 4534 . . . . 5 (({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∈ V ∧ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩} ∈ V) → ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}) ∈ V)
279261, 277, 278syl2anc 411 . . . 4 (𝜑 → ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}) ∈ V)
280 unexg 4534 . . . 4 ((({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∈ V ∧ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}) ∈ V) → (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})) ∈ V)
281227, 279, 280syl2anc 411 . . 3 (𝜑 → (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})) ∈ V)
2823, 167, 169, 171, 281ovmpod 6138 . 2 (𝜑 → (𝑆Xs𝑅) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
2831, 282eqtrid 2274 1 (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wtru 1396  wcel 2200  wral 2508  Vcvv 2799  csb 3124  cun 3195  wss 3197  {csn 3666  {cpr 3667  {ctp 3668  cop 3669   cuni 3888   ciun 3965   class class class wbr 4083  {copab 4144  cmpt 4145   × cxp 4717  dom cdm 4719  ran crn 4720  ccom 4723  Fun wfun 5312   Fn wfn 5313  cfv 5318  (class class class)co 6007  cmpo 6009  1st c1st 6290  2nd c2nd 6291  𝑚 cmap 6803  Xcixp 6853  supcsup 7157  0cc0 8007  *cxr 8188   < clt 8189  cn 9118  ndxcnx 13037  Slot cslot 13039  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Scalarcsca 13121   ·𝑠 cvsca 13122  ·𝑖cip 13123  TopSetcts 13124  lecple 13125  distcds 13127  Hom chom 13129  compcco 13130  TopOpenctopn 13281  tcpt 13296   Σg cgsu 13298  Xscprds 13306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-sup 7159  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-tset 13137  df-ple 13138  df-ds 13140  df-hom 13142  df-cco 13143  df-rest 13282  df-topn 13283  df-topgen 13301  df-pt 13302  df-prds 13308
This theorem is referenced by:  prdsbaslemss  13315  prdssca  13316  prdsbas  13317  prdsplusg  13318  prdsmulr  13319
  Copyright terms: Public domain W3C validator