| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2197 |
. 2
⊢ (𝜑 → 𝑃 = 𝑃) |
| 2 | | prdsbaslemss.p |
. . . 4
⊢ 𝑃 = (𝑆Xs𝑅) |
| 3 | | eqid 2196 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 4 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → dom 𝑅 = dom 𝑅) |
| 5 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) |
| 6 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 7 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 8 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
| 9 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
| 10 | | eqidd 2197 |
. . . 4
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen
∘ 𝑅))) |
| 11 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
| 12 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
| 13 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
| 14 | | eqidd 2197 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
| 15 | | prdsbaslemss.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 16 | | prdsbaslemss.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| 17 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | prdsval 12975 |
. . 3
⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom
𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
| 18 | | dmexg 4931 |
. . . . . 6
⊢ (𝑅 ∈ 𝑊 → dom 𝑅 ∈ V) |
| 19 | 16, 18 | syl 14 |
. . . . 5
⊢ (𝜑 → dom 𝑅 ∈ V) |
| 20 | | basfn 12761 |
. . . . . . 7
⊢ Base Fn
V |
| 21 | | vex 2766 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 22 | | fvexg 5580 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑊 ∧ 𝑥 ∈ V) → (𝑅‘𝑥) ∈ V) |
| 23 | 16, 21, 22 | sylancl 413 |
. . . . . . 7
⊢ (𝜑 → (𝑅‘𝑥) ∈ V) |
| 24 | | funfvex 5578 |
. . . . . . . 8
⊢ ((Fun
Base ∧ (𝑅‘𝑥) ∈ dom Base) →
(Base‘(𝑅‘𝑥)) ∈ V) |
| 25 | 24 | funfni 5361 |
. . . . . . 7
⊢ ((Base Fn
V ∧ (𝑅‘𝑥) ∈ V) →
(Base‘(𝑅‘𝑥)) ∈ V) |
| 26 | 20, 23, 25 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → (Base‘(𝑅‘𝑥)) ∈ V) |
| 27 | 26 | ralrimivw 2571 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) |
| 28 | | ixpexgg 6790 |
. . . . 5
⊢ ((dom
𝑅 ∈ V ∧
∀𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) |
| 29 | 19, 27, 28 | syl2anc 411 |
. . . 4
⊢ (𝜑 → X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) |
| 30 | | mpoexga 6279 |
. . . . 5
⊢ ((X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V ∧ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 31 | 29, 29, 30 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 32 | | mpoexga 6279 |
. . . . 5
⊢ ((X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V ∧ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 33 | 29, 29, 32 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 34 | 15 | elexd 2776 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) |
| 35 | | funfvex 5578 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
| 36 | 35 | funfni 5361 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
| 37 | 20, 34, 36 | sylancr 414 |
. . . . 5
⊢ (𝜑 → (Base‘𝑆) ∈ V) |
| 38 | | mpoexga 6279 |
. . . . 5
⊢
(((Base‘𝑆)
∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 39 | 37, 29, 38 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
| 40 | | mpoexga 6279 |
. . . . 5
⊢ ((X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V ∧ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) ∈ V) |
| 41 | 29, 29, 40 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) ∈ V) |
| 42 | | topnfn 12946 |
. . . . . . 7
⊢ TopOpen
Fn V |
| 43 | | fnfun 5356 |
. . . . . . 7
⊢ (TopOpen
Fn V → Fun TopOpen) |
| 44 | 42, 43 | ax-mp 5 |
. . . . . 6
⊢ Fun
TopOpen |
| 45 | | cofunexg 6175 |
. . . . . 6
⊢ ((Fun
TopOpen ∧ 𝑅 ∈
𝑊) → (TopOpen ∘
𝑅) ∈
V) |
| 46 | 44, 16, 45 | sylancr 414 |
. . . . 5
⊢ (𝜑 → (TopOpen ∘ 𝑅) ∈ V) |
| 47 | | ptex 12966 |
. . . . 5
⊢ ((TopOpen
∘ 𝑅) ∈ V →
(∏t‘(TopOpen ∘ 𝑅)) ∈ V) |
| 48 | 46, 47 | syl 14 |
. . . 4
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) ∈ V) |
| 49 | | vex 2766 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 50 | | vex 2766 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
| 51 | 49, 50 | prss 3779 |
. . . . . . 7
⊢ ((𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∧ 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ↔ {𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) |
| 52 | 51 | anbi1i 458 |
. . . . . 6
⊢ (((𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∧ 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥)) ↔ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))) |
| 53 | 52 | opabbii 4101 |
. . . . 5
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∧ 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} |
| 54 | | xpexg 4778 |
. . . . . . 7
⊢ ((X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V ∧ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → (X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ∈ V) |
| 55 | 29, 29, 54 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ∈ V) |
| 56 | | opabssxp 4738 |
. . . . . . 7
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∧ 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ⊆ (X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) |
| 57 | 56 | a1i 9 |
. . . . . 6
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ⊆ (X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)))) |
| 58 | 55, 57 | ssexd 4174 |
. . . . 5
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ∈ V) |
| 59 | 53, 58 | eqeltrrid 2284 |
. . . 4
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} ∈ V) |
| 60 | | mpoexga 6279 |
. . . . 5
⊢ ((X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V ∧ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
∈ V) |
| 61 | 29, 29, 60 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
∈ V) |
| 62 | | mpoexga 6279 |
. . . . 5
⊢ ((X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V ∧ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ V) |
| 63 | 29, 29, 62 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ V) |
| 64 | | mpoexga 6279 |
. . . . 5
⊢ (((X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) ∈ V ∧ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) ∈ V) → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) ∈ V) |
| 65 | 55, 29, 64 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) ∈ V) |
| 66 | 29, 31, 33, 15, 39, 41, 48, 59, 61, 63, 65 | prdsvalstrd 12973 |
. . 3
⊢ (𝜑 → (({〈(Base‘ndx),
X𝑥
∈ dom 𝑅(Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom
𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) Struct 〈1, ;15〉) |
| 67 | 17, 66 | eqbrtrd 4056 |
. 2
⊢ (𝜑 → 𝑃 Struct 〈1, ;15〉) |
| 68 | | prdsbaslem.2 |
. . 3
⊢ 𝐸 = Slot (𝐸‘ndx) |
| 69 | | prdsbaslemss.e |
. . 3
⊢ (𝐸‘ndx) ∈
ℕ |
| 70 | 68, 69 | ndxslid 12728 |
. 2
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| 71 | | prdsbaslemss.ss |
. 2
⊢ (𝜑 → {〈(𝐸‘ndx), 𝑇〉} ⊆ 𝑃) |
| 72 | | prdsbaslem.3 |
. 2
⊢ (𝜑 → 𝑇 ∈ 𝑋) |
| 73 | | prdsbaslem.1 |
. 2
⊢ 𝐴 = (𝐸‘𝑃) |
| 74 | 1, 67, 70, 71, 72, 73 | strslfv3 12749 |
1
⊢ (𝜑 → 𝐴 = 𝑇) |