ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsbaslemss GIF version

Theorem prdsbaslemss 13150
Description: Lemma for prdsbas 13152 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.)
Hypotheses
Ref Expression
prdsbaslemss.p 𝑃 = (𝑆Xs𝑅)
prdsbaslemss.s (𝜑𝑆𝑉)
prdsbaslemss.r (𝜑𝑅𝑊)
prdsbaslem.1 𝐴 = (𝐸𝑃)
prdsbaslem.2 𝐸 = Slot (𝐸‘ndx)
prdsbaslemss.e (𝐸‘ndx) ∈ ℕ
prdsbaslem.3 (𝜑𝑇𝑋)
prdsbaslemss.ss (𝜑 → {⟨(𝐸‘ndx), 𝑇⟩} ⊆ 𝑃)
Assertion
Ref Expression
prdsbaslemss (𝜑𝐴 = 𝑇)

Proof of Theorem prdsbaslemss
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2207 . 2 (𝜑𝑃 = 𝑃)
2 prdsbaslemss.p . . . 4 𝑃 = (𝑆Xs𝑅)
3 eqid 2206 . . . 4 (Base‘𝑆) = (Base‘𝑆)
4 eqidd 2207 . . . 4 (𝜑 → dom 𝑅 = dom 𝑅)
5 eqidd 2207 . . . 4 (𝜑X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)))
6 eqidd 2207 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
7 eqidd 2207 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
8 eqidd 2207 . . . 4 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
9 eqidd 2207 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
10 eqidd 2207 . . . 4 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
11 eqidd 2207 . . . 4 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
12 eqidd 2207 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
13 eqidd 2207 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
14 eqidd 2207 . . . 4 (𝜑 → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
15 prdsbaslemss.s . . . 4 (𝜑𝑆𝑉)
16 prdsbaslemss.r . . . 4 (𝜑𝑅𝑊)
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16prdsval 13149 . . 3 (𝜑𝑃 = (({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
18 dmexg 4947 . . . . . 6 (𝑅𝑊 → dom 𝑅 ∈ V)
1916, 18syl 14 . . . . 5 (𝜑 → dom 𝑅 ∈ V)
20 basfn 12934 . . . . . . 7 Base Fn V
21 vex 2776 . . . . . . . 8 𝑥 ∈ V
22 fvexg 5602 . . . . . . . 8 ((𝑅𝑊𝑥 ∈ V) → (𝑅𝑥) ∈ V)
2316, 21, 22sylancl 413 . . . . . . 7 (𝜑 → (𝑅𝑥) ∈ V)
24 funfvex 5600 . . . . . . . 8 ((Fun Base ∧ (𝑅𝑥) ∈ dom Base) → (Base‘(𝑅𝑥)) ∈ V)
2524funfni 5381 . . . . . . 7 ((Base Fn V ∧ (𝑅𝑥) ∈ V) → (Base‘(𝑅𝑥)) ∈ V)
2620, 23, 25sylancr 414 . . . . . 6 (𝜑 → (Base‘(𝑅𝑥)) ∈ V)
2726ralrimivw 2581 . . . . 5 (𝜑 → ∀𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V)
28 ixpexgg 6816 . . . . 5 ((dom 𝑅 ∈ V ∧ ∀𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V)
2919, 27, 28syl2anc 411 . . . 4 (𝜑X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V)
30 mpoexga 6305 . . . . 5 ((X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
3129, 29, 30syl2anc 411 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
32 mpoexga 6305 . . . . 5 ((X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
3329, 29, 32syl2anc 411 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
3415elexd 2786 . . . . . 6 (𝜑𝑆 ∈ V)
35 funfvex 5600 . . . . . . 7 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
3635funfni 5381 . . . . . 6 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
3720, 34, 36sylancr 414 . . . . 5 (𝜑 → (Base‘𝑆) ∈ V)
38 mpoexga 6305 . . . . 5 (((Base‘𝑆) ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
3937, 29, 38syl2anc 411 . . . 4 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
40 mpoexga 6305 . . . . 5 ((X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) ∈ V)
4129, 29, 40syl2anc 411 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) ∈ V)
42 topnfn 13120 . . . . . . 7 TopOpen Fn V
43 fnfun 5376 . . . . . . 7 (TopOpen Fn V → Fun TopOpen)
4442, 43ax-mp 5 . . . . . 6 Fun TopOpen
45 cofunexg 6201 . . . . . 6 ((Fun TopOpen ∧ 𝑅𝑊) → (TopOpen ∘ 𝑅) ∈ V)
4644, 16, 45sylancr 414 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅) ∈ V)
47 ptex 13140 . . . . 5 ((TopOpen ∘ 𝑅) ∈ V → (∏t‘(TopOpen ∘ 𝑅)) ∈ V)
4846, 47syl 14 . . . 4 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) ∈ V)
49 vex 2776 . . . . . . . 8 𝑓 ∈ V
50 vex 2776 . . . . . . . 8 𝑔 ∈ V
5149, 50prss 3791 . . . . . . 7 ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ↔ {𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)))
5251anbi1i 458 . . . . . 6 (((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
5352opabbii 4115 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}
54 xpexg 4793 . . . . . . 7 ((X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ∈ V)
5529, 29, 54syl2anc 411 . . . . . 6 (𝜑 → (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ∈ V)
56 opabssxp 4753 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ⊆ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)))
5756a1i 9 . . . . . 6 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ⊆ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))))
5855, 57ssexd 4188 . . . . 5 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ∈ V)
5953, 58eqeltrrid 2294 . . . 4 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ∈ V)
60 mpoexga 6305 . . . . 5 ((X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) ∈ V)
6129, 29, 60syl2anc 411 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) ∈ V)
62 mpoexga 6305 . . . . 5 ((X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) ∈ V)
6329, 29, 62syl2anc 411 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) ∈ V)
64 mpoexga 6305 . . . . 5 (((X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))) ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) ∈ V)
6555, 29, 64syl2anc 411 . . . 4 (𝜑 → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) ∈ V)
6629, 31, 33, 15, 39, 41, 48, 59, 61, 63, 65prdsvalstrd 13147 . . 3 (𝜑 → (({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) Struct ⟨1, 15⟩)
6717, 66eqbrtrd 4069 . 2 (𝜑𝑃 Struct ⟨1, 15⟩)
68 prdsbaslem.2 . . 3 𝐸 = Slot (𝐸‘ndx)
69 prdsbaslemss.e . . 3 (𝐸‘ndx) ∈ ℕ
7068, 69ndxslid 12901 . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
71 prdsbaslemss.ss . 2 (𝜑 → {⟨(𝐸‘ndx), 𝑇⟩} ⊆ 𝑃)
72 prdsbaslem.3 . 2 (𝜑𝑇𝑋)
73 prdsbaslem.1 . 2 𝐴 = (𝐸𝑃)
741, 67, 70, 71, 72, 73strslfv3 12922 1 (𝜑𝐴 = 𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  cun 3165  wss 3167  {csn 3634  {cpr 3635  {ctp 3636  cop 3637   class class class wbr 4047  {copab 4108  cmpt 4109   × cxp 4677  dom cdm 4679  ran crn 4680  ccom 4683  Fun wfun 5270   Fn wfn 5271  cfv 5276  (class class class)co 5951  cmpo 5953  1st c1st 6231  2nd c2nd 6232  Xcixp 6792  supcsup 7091  0cc0 7932  1c1 7933  *cxr 8113   < clt 8114  cn 9043  5c5 9097  cdc 9511   Struct cstr 12872  ndxcnx 12873  Slot cslot 12875  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Scalarcsca 12956   ·𝑠 cvsca 12957  ·𝑖cip 12958  TopSetcts 12959  lecple 12960  distcds 12962  Hom chom 12964  compcco 12965  TopOpenctopn 13116  tcpt 13131   Σg cgsu 13133  Xscprds 13141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-fz 10138  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-tset 12972  df-ple 12973  df-ds 12975  df-hom 12977  df-cco 12978  df-rest 13117  df-topn 13118  df-topgen 13136  df-pt 13137  df-prds 13143
This theorem is referenced by:  prdssca  13151  prdsbas  13152  prdsplusg  13153  prdsmulr  13154
  Copyright terms: Public domain W3C validator