Step | Hyp | Ref
| Expression |
1 | | elex 2760 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
2 | 1 | adantr 276 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐺 ∈ V) |
3 | | elex 2760 |
. . . 4
⊢ (𝑆 ∈ 𝑊 → 𝑆 ∈ V) |
4 | 3 | adantl 277 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑆 ∈ V) |
5 | | vex 2752 |
. . . . . . 7
⊢ 𝑥 ∈ V |
6 | | vex 2752 |
. . . . . . 7
⊢ 𝑦 ∈ V |
7 | 5, 6 | prss 3760 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺)) |
8 | 7 | anbi1i 458 |
. . . . 5
⊢ (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)) |
9 | 8 | opabbii 4082 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)} |
10 | | basfn 12534 |
. . . . . . 7
⊢ Base Fn
V |
11 | | funfvex 5544 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝐺 ∈ dom
Base) → (Base‘𝐺)
∈ V) |
12 | 11 | funfni 5328 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝐺 ∈ V) →
(Base‘𝐺) ∈
V) |
13 | 10, 2, 12 | sylancr 414 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (Base‘𝐺) ∈ V) |
14 | | xpexg 4752 |
. . . . . 6
⊢
(((Base‘𝐺)
∈ V ∧ (Base‘𝐺) ∈ V) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V) |
15 | 13, 13, 14 | syl2anc 411 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V) |
16 | | opabssxp 4712 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺)) |
17 | 16 | a1i 9 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺))) |
18 | 15, 17 | ssexd 4155 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)} ∈ V) |
19 | 9, 18 | eqeltrrid 2275 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)} ∈ V) |
20 | | fveq2 5527 |
. . . . . . 7
⊢ (𝑟 = 𝐺 → (Base‘𝑟) = (Base‘𝐺)) |
21 | 20 | sseq2d 3197 |
. . . . . 6
⊢ (𝑟 = 𝐺 → ({𝑥, 𝑦} ⊆ (Base‘𝑟) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺))) |
22 | | fveq2 5527 |
. . . . . . . 8
⊢ (𝑟 = 𝐺 → (+g‘𝑟) = (+g‘𝐺)) |
23 | | fveq2 5527 |
. . . . . . . . 9
⊢ (𝑟 = 𝐺 → (invg‘𝑟) = (invg‘𝐺)) |
24 | 23 | fveq1d 5529 |
. . . . . . . 8
⊢ (𝑟 = 𝐺 → ((invg‘𝑟)‘𝑥) = ((invg‘𝐺)‘𝑥)) |
25 | | eqidd 2188 |
. . . . . . . 8
⊢ (𝑟 = 𝐺 → 𝑦 = 𝑦) |
26 | 22, 24, 25 | oveq123d 5909 |
. . . . . . 7
⊢ (𝑟 = 𝐺 → (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) = (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦)) |
27 | 26 | eleq1d 2256 |
. . . . . 6
⊢ (𝑟 = 𝐺 → ((((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖 ↔ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑖)) |
28 | 21, 27 | anbi12d 473 |
. . . . 5
⊢ (𝑟 = 𝐺 → (({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑖))) |
29 | 28 | opabbidv 4081 |
. . . 4
⊢ (𝑟 = 𝐺 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑖)}) |
30 | | eleq2 2251 |
. . . . . 6
⊢ (𝑖 = 𝑆 → ((((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑖 ↔ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)) |
31 | 30 | anbi2d 464 |
. . . . 5
⊢ (𝑖 = 𝑆 → (({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆))) |
32 | 31 | opabbidv 4081 |
. . . 4
⊢ (𝑖 = 𝑆 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑖)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)}) |
33 | | df-eqg 13064 |
. . . 4
⊢
~QG = (𝑟
∈ V, 𝑖 ∈ V
↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) |
34 | 29, 32, 33 | ovmpog 6023 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)} ∈ V) → (𝐺 ~QG 𝑆) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)}) |
35 | 2, 4, 19, 34 | syl3anc 1248 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐺 ~QG 𝑆) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝑆)}) |
36 | 35, 19 | eqeltrd 2264 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐺 ~QG 𝑆) ∈ V) |