ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgex GIF version

Theorem eqgex 13601
Description: The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
eqgex ((𝐺𝑉𝑆𝑊) → (𝐺 ~QG 𝑆) ∈ V)

Proof of Theorem eqgex
Dummy variables 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2784 . . . 4 (𝐺𝑉𝐺 ∈ V)
21adantr 276 . . 3 ((𝐺𝑉𝑆𝑊) → 𝐺 ∈ V)
3 elex 2784 . . . 4 (𝑆𝑊𝑆 ∈ V)
43adantl 277 . . 3 ((𝐺𝑉𝑆𝑊) → 𝑆 ∈ V)
5 vex 2776 . . . . . . 7 𝑥 ∈ V
6 vex 2776 . . . . . . 7 𝑦 ∈ V
75, 6prss 3791 . . . . . 6 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺))
87anbi1i 458 . . . . 5 (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
98opabbii 4115 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}
10 basfn 12934 . . . . . . 7 Base Fn V
11 funfvex 5600 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1211funfni 5381 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1310, 2, 12sylancr 414 . . . . . 6 ((𝐺𝑉𝑆𝑊) → (Base‘𝐺) ∈ V)
14 xpexg 4793 . . . . . 6 (((Base‘𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V)
1513, 13, 14syl2anc 411 . . . . 5 ((𝐺𝑉𝑆𝑊) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V)
16 opabssxp 4753 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺))
1716a1i 9 . . . . 5 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺)))
1815, 17ssexd 4188 . . . 4 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V)
199, 18eqeltrrid 2294 . . 3 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V)
20 fveq2 5583 . . . . . . 7 (𝑟 = 𝐺 → (Base‘𝑟) = (Base‘𝐺))
2120sseq2d 3224 . . . . . 6 (𝑟 = 𝐺 → ({𝑥, 𝑦} ⊆ (Base‘𝑟) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺)))
22 fveq2 5583 . . . . . . . 8 (𝑟 = 𝐺 → (+g𝑟) = (+g𝐺))
23 fveq2 5583 . . . . . . . . 9 (𝑟 = 𝐺 → (invg𝑟) = (invg𝐺))
2423fveq1d 5585 . . . . . . . 8 (𝑟 = 𝐺 → ((invg𝑟)‘𝑥) = ((invg𝐺)‘𝑥))
25 eqidd 2207 . . . . . . . 8 (𝑟 = 𝐺𝑦 = 𝑦)
2622, 24, 25oveq123d 5972 . . . . . . 7 (𝑟 = 𝐺 → (((invg𝑟)‘𝑥)(+g𝑟)𝑦) = (((invg𝐺)‘𝑥)(+g𝐺)𝑦))
2726eleq1d 2275 . . . . . 6 (𝑟 = 𝐺 → ((((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖))
2821, 27anbi12d 473 . . . . 5 (𝑟 = 𝐺 → (({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)))
2928opabbidv 4114 . . . 4 (𝑟 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)})
30 eleq2 2270 . . . . . 6 (𝑖 = 𝑆 → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
3130anbi2d 464 . . . . 5 (𝑖 = 𝑆 → (({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
3231opabbidv 4114 . . . 4 (𝑖 = 𝑆 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
33 df-eqg 13552 . . . 4 ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)})
3429, 32, 33ovmpog 6087 . . 3 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
352, 4, 19, 34syl3anc 1250 . 2 ((𝐺𝑉𝑆𝑊) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
3635, 19eqeltrd 2283 1 ((𝐺𝑉𝑆𝑊) → (𝐺 ~QG 𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  wss 3167  {cpr 3635  {copab 4108   × cxp 4677   Fn wfn 5271  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  invgcminusg 13377   ~QG cqg 13549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-inn 9044  df-ndx 12879  df-slot 12880  df-base 12882  df-eqg 13552
This theorem is referenced by:  quselbasg  13610  quseccl0g  13611  qusghm  13662  quscrng  14339  znval  14442  znle  14443  znbaslemnn  14445  znbas  14450  znzrhval  14453  znzrhfo  14454
  Copyright terms: Public domain W3C validator