![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0subg | GIF version |
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.) |
Ref | Expression |
---|---|
0subg.z | β’ 0 = (0gβπΊ) |
Ref | Expression |
---|---|
0subg | β’ (πΊ β Grp β { 0 } β (SubGrpβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 12884 | . . 3 β’ (πΊ β Grp β πΊ β Mnd) | |
2 | 0subg.z | . . . 4 β’ 0 = (0gβπΊ) | |
3 | 2 | 0subm 12871 | . . 3 β’ (πΊ β Mnd β { 0 } β (SubMndβπΊ)) |
4 | 1, 3 | syl 14 | . 2 β’ (πΊ β Grp β { 0 } β (SubMndβπΊ)) |
5 | eqid 2177 | . . . . 5 β’ (invgβπΊ) = (invgβπΊ) | |
6 | 2, 5 | grpinvid 12930 | . . . 4 β’ (πΊ β Grp β ((invgβπΊ)β 0 ) = 0 ) |
7 | eqid 2177 | . . . . . . 7 β’ (BaseβπΊ) = (BaseβπΊ) | |
8 | 7, 2 | grpidcl 12904 | . . . . . 6 β’ (πΊ β Grp β 0 β (BaseβπΊ)) |
9 | 7, 5 | grpinvcl 12921 | . . . . . 6 β’ ((πΊ β Grp β§ 0 β (BaseβπΊ)) β ((invgβπΊ)β 0 ) β (BaseβπΊ)) |
10 | 8, 9 | mpdan 421 | . . . . 5 β’ (πΊ β Grp β ((invgβπΊ)β 0 ) β (BaseβπΊ)) |
11 | elsng 3608 | . . . . 5 β’ (((invgβπΊ)β 0 ) β (BaseβπΊ) β (((invgβπΊ)β 0 ) β { 0 } β ((invgβπΊ)β 0 ) = 0 )) | |
12 | 10, 11 | syl 14 | . . . 4 β’ (πΊ β Grp β (((invgβπΊ)β 0 ) β { 0 } β ((invgβπΊ)β 0 ) = 0 )) |
13 | 6, 12 | mpbird 167 | . . 3 β’ (πΊ β Grp β ((invgβπΊ)β 0 ) β { 0 }) |
14 | fveq2 5516 | . . . . . 6 β’ (π = 0 β ((invgβπΊ)βπ) = ((invgβπΊ)β 0 )) | |
15 | 14 | eleq1d 2246 | . . . . 5 β’ (π = 0 β (((invgβπΊ)βπ) β { 0 } β ((invgβπΊ)β 0 ) β { 0 })) |
16 | 15 | ralsng 3633 | . . . 4 β’ ( 0 β (BaseβπΊ) β (βπ β { 0 } ((invgβπΊ)βπ) β { 0 } β ((invgβπΊ)β 0 ) β { 0 })) |
17 | 8, 16 | syl 14 | . . 3 β’ (πΊ β Grp β (βπ β { 0 } ((invgβπΊ)βπ) β { 0 } β ((invgβπΊ)β 0 ) β { 0 })) |
18 | 13, 17 | mpbird 167 | . 2 β’ (πΊ β Grp β βπ β { 0 } ((invgβπΊ)βπ) β { 0 }) |
19 | 5 | issubg3 13052 | . 2 β’ (πΊ β Grp β ({ 0 } β (SubGrpβπΊ) β ({ 0 } β (SubMndβπΊ) β§ βπ β { 0 } ((invgβπΊ)βπ) β { 0 }))) |
20 | 4, 18, 19 | mpbir2and 944 | 1 β’ (πΊ β Grp β { 0 } β (SubGrpβπΊ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 {csn 3593 βcfv 5217 Basecbs 12462 0gc0g 12705 Mndcmnd 12817 SubMndcsubmnd 12850 Grpcgrp 12877 invgcminusg 12878 SubGrpcsubg 13027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-pre-ltirr 7923 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-ltxr 7997 df-inn 8920 df-2 8978 df-ndx 12465 df-slot 12466 df-base 12468 df-sets 12469 df-iress 12470 df-plusg 12549 df-0g 12707 df-mgm 12775 df-sgrp 12808 df-mnd 12818 df-submnd 12852 df-grp 12880 df-minusg 12881 df-subg 13030 |
This theorem is referenced by: 0nsg 13074 |
Copyright terms: Public domain | W3C validator |