| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0subg | GIF version | ||
| Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0subg.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| 0subg | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13209 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | 0subg.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 2 | 0subm 13186 | . . 3 ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubMnd‘𝐺)) |
| 5 | eqid 2196 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | 2, 5 | grpinvid 13262 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 7 | eqid 2196 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 8 | 7, 2 | grpidcl 13231 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 9 | 7, 5 | grpinvcl 13250 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘ 0 ) ∈ (Base‘𝐺)) |
| 10 | 8, 9 | mpdan 421 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ (Base‘𝐺)) |
| 11 | elsng 3638 | . . . . 5 ⊢ (((invg‘𝐺)‘ 0 ) ∈ (Base‘𝐺) → (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 )) | |
| 12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝐺 ∈ Grp → (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 )) |
| 13 | 6, 12 | mpbird 167 | . . 3 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
| 14 | fveq2 5561 | . . . . . 6 ⊢ (𝑎 = 0 → ((invg‘𝐺)‘𝑎) = ((invg‘𝐺)‘ 0 )) | |
| 15 | 14 | eleq1d 2265 | . . . . 5 ⊢ (𝑎 = 0 → (((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 16 | 15 | ralsng 3663 | . . . 4 ⊢ ( 0 ∈ (Base‘𝐺) → (∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 17 | 8, 16 | syl 14 | . . 3 ⊢ (𝐺 ∈ Grp → (∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 18 | 13, 17 | mpbird 167 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 }) |
| 19 | 5 | issubg3 13398 | . 2 ⊢ (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 }))) |
| 20 | 4, 18, 19 | mpbir2and 946 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {csn 3623 ‘cfv 5259 Basecbs 12703 0gc0g 12958 Mndcmnd 13118 SubMndcsubmnd 13160 Grpcgrp 13202 invgcminusg 13203 SubGrpcsubg 13373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-submnd 13162 df-grp 13205 df-minusg 13206 df-subg 13376 |
| This theorem is referenced by: 0nsg 13420 |
| Copyright terms: Public domain | W3C validator |