| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0subg | GIF version | ||
| Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0subg.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| 0subg | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13409 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | 0subg.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 2 | 0subm 13386 | . . 3 ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubMnd‘𝐺)) |
| 5 | eqid 2206 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | 2, 5 | grpinvid 13462 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 7 | eqid 2206 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 8 | 7, 2 | grpidcl 13431 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 9 | 7, 5 | grpinvcl 13450 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘ 0 ) ∈ (Base‘𝐺)) |
| 10 | 8, 9 | mpdan 421 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ (Base‘𝐺)) |
| 11 | elsng 3652 | . . . . 5 ⊢ (((invg‘𝐺)‘ 0 ) ∈ (Base‘𝐺) → (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 )) | |
| 12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝐺 ∈ Grp → (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 )) |
| 13 | 6, 12 | mpbird 167 | . . 3 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
| 14 | fveq2 5588 | . . . . . 6 ⊢ (𝑎 = 0 → ((invg‘𝐺)‘𝑎) = ((invg‘𝐺)‘ 0 )) | |
| 15 | 14 | eleq1d 2275 | . . . . 5 ⊢ (𝑎 = 0 → (((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 16 | 15 | ralsng 3677 | . . . 4 ⊢ ( 0 ∈ (Base‘𝐺) → (∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 17 | 8, 16 | syl 14 | . . 3 ⊢ (𝐺 ∈ Grp → (∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 18 | 13, 17 | mpbird 167 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 }) |
| 19 | 5 | issubg3 13598 | . 2 ⊢ (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 }))) |
| 20 | 4, 18, 19 | mpbir2and 947 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {csn 3637 ‘cfv 5279 Basecbs 12902 0gc0g 13158 Mndcmnd 13318 SubMndcsubmnd 13360 Grpcgrp 13402 invgcminusg 13403 SubGrpcsubg 13573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-iress 12910 df-plusg 12992 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-submnd 13362 df-grp 13405 df-minusg 13406 df-subg 13576 |
| This theorem is referenced by: 0nsg 13620 |
| Copyright terms: Public domain | W3C validator |