ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgm1 GIF version

Theorem mgm1 12849
Description: The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
Hypothesis
Ref Expression
mgm1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mgm1 (𝐼𝑉𝑀 ∈ Mgm)

Proof of Theorem mgm1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5900 . . . . . 6 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
2 opexg 4246 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
32anidms 397 . . . . . . 7 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
4 fvsng 5733 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
53, 4mpancom 422 . . . . . 6 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
61, 5eqtrid 2234 . . . . 5 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
7 snidg 3636 . . . . 5 (𝐼𝑉𝐼 ∈ {𝐼})
86, 7eqeltrd 2266 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼})
9 oveq1 5904 . . . . . . . 8 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
109eleq1d 2258 . . . . . . 7 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
1110ralbidv 2490 . . . . . 6 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
1211ralsng 3647 . . . . 5 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
13 oveq2 5905 . . . . . . 7 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1413eleq1d 2258 . . . . . 6 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
1514ralsng 3647 . . . . 5 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
1612, 15bitrd 188 . . . 4 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
178, 16mpbird 167 . . 3 (𝐼𝑉 → ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼})
18 snexg 4202 . . . . 5 (𝐼𝑉 → {𝐼} ∈ V)
19 opexg 4246 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
203, 19mpancom 422 . . . . . 6 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
21 snexg 4202 . . . . . 6 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
2220, 21syl 14 . . . . 5 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
23 mgm1.m . . . . . 6 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
2423grpbaseg 12641 . . . . 5 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
2518, 22, 24syl2anc 411 . . . 4 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
2623grpplusgg 12642 . . . . . . . 8 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2718, 22, 26syl2anc 411 . . . . . . 7 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2827oveqd 5914 . . . . . 6 (𝐼𝑉 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝑥(+g𝑀)𝑦))
2928, 25eleq12d 2260 . . . . 5 (𝐼𝑉 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3025, 29raleqbidv 2698 . . . 4 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3125, 30raleqbidv 2698 . . 3 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3217, 31mpbid 147 . 2 (𝐼𝑉 → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
337, 25eleqtrd 2268 . . 3 (𝐼𝑉𝐼 ∈ (Base‘𝑀))
34 eqid 2189 . . . 4 (Base‘𝑀) = (Base‘𝑀)
35 eqid 2189 . . . 4 (+g𝑀) = (+g𝑀)
3634, 35ismgmn0 12837 . . 3 (𝐼 ∈ (Base‘𝑀) → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3733, 36syl 14 . 2 (𝐼𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3832, 37mpbird 167 1 (𝐼𝑉𝑀 ∈ Mgm)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752  {csn 3607  {cpr 3608  cop 3610  cfv 5235  (class class class)co 5897  ndxcnx 12512  Basecbs 12515  +gcplusg 12592  Mgmcmgm 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5900  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-mgm 12835
This theorem is referenced by:  sgrp1  12889
  Copyright terms: Public domain W3C validator