ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgm1 GIF version

Theorem mgm1 12601
Description: The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
Hypothesis
Ref Expression
mgm1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mgm1 (𝐼𝑉𝑀 ∈ Mgm)

Proof of Theorem mgm1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5845 . . . . . 6 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
2 opexg 4206 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
32anidms 395 . . . . . . 7 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
4 fvsng 5681 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
53, 4mpancom 419 . . . . . 6 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
61, 5eqtrid 2210 . . . . 5 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
7 snidg 3605 . . . . 5 (𝐼𝑉𝐼 ∈ {𝐼})
86, 7eqeltrd 2243 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼})
9 oveq1 5849 . . . . . . . 8 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
109eleq1d 2235 . . . . . . 7 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
1110ralbidv 2466 . . . . . 6 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
1211ralsng 3616 . . . . 5 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼}))
13 oveq2 5850 . . . . . . 7 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1413eleq1d 2235 . . . . . 6 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
1514ralsng 3616 . . . . 5 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
1612, 15bitrd 187 . . . 4 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ∈ {𝐼}))
178, 16mpbird 166 . . 3 (𝐼𝑉 → ∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼})
18 snexg 4163 . . . . 5 (𝐼𝑉 → {𝐼} ∈ V)
19 opexg 4206 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
203, 19mpancom 419 . . . . . 6 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
21 snexg 4163 . . . . . 6 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
2220, 21syl 14 . . . . 5 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
23 mgm1.m . . . . . 6 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
2423grpbaseg 12503 . . . . 5 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
2518, 22, 24syl2anc 409 . . . 4 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
2623grpplusgg 12504 . . . . . . . 8 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2718, 22, 26syl2anc 409 . . . . . . 7 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2827oveqd 5859 . . . . . 6 (𝐼𝑉 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝑥(+g𝑀)𝑦))
2928, 25eleq12d 2237 . . . . 5 (𝐼𝑉 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3025, 29raleqbidv 2673 . . . 4 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3125, 30raleqbidv 2673 . . 3 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) ∈ {𝐼} ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3217, 31mpbid 146 . 2 (𝐼𝑉 → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
337, 25eleqtrd 2245 . . 3 (𝐼𝑉𝐼 ∈ (Base‘𝑀))
34 eqid 2165 . . . 4 (Base‘𝑀) = (Base‘𝑀)
35 eqid 2165 . . . 4 (+g𝑀) = (+g𝑀)
3634, 35ismgmn0 12589 . . 3 (𝐼 ∈ (Base‘𝑀) → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3733, 36syl 14 . 2 (𝐼𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
3832, 37mpbird 166 1 (𝐼𝑉𝑀 ∈ Mgm)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  {csn 3576  {cpr 3577  cop 3579  cfv 5188  (class class class)co 5842  ndxcnx 12391  Basecbs 12394  +gcplusg 12457  Mgmcmgm 12585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-inn 8858  df-2 8916  df-ndx 12397  df-slot 12398  df-base 12400  df-plusg 12470  df-mgm 12587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator