ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexre GIF version

Theorem recexre 8476
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
recexre ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 7899 . . . 4 0 ∈ ℝ
2 reapval 8474 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
31, 2mpan2 422 . . 3 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
4 lt0neg1 8366 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
5 renegcl 8159 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 ltxrlt 7964 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (0 < -𝐴 ↔ 0 < -𝐴))
71, 5, 6sylancr 411 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < -𝐴 ↔ 0 < -𝐴))
84, 7bitrd 187 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
98pm5.32i 450 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) ↔ (𝐴 ∈ ℝ ∧ 0 < -𝐴))
10 ax-precex 7863 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1))
11 simpr 109 . . . . . . . . . . 11 ((0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → (-𝐴 · 𝑦) = 1)
1211reximi 2563 . . . . . . . . . 10 (∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
1310, 12syl 14 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
145, 13sylan 281 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
159, 14sylbi 120 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
16 recn 7886 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1716negnegd 8200 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → --𝑦 = 𝑦)
1817oveq2d 5858 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (-𝐴 · --𝑦) = (-𝐴 · 𝑦))
1918eqeq1d 2174 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((-𝐴 · --𝑦) = 1 ↔ (-𝐴 · 𝑦) = 1))
2019pm5.32i 450 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) ↔ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1))
21 renegcl 8159 . . . . . . . . . 10 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
22 negeq 8091 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → -𝑥 = --𝑦)
2322oveq2d 5858 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (-𝐴 · -𝑥) = (-𝐴 · --𝑦))
2423eqeq1d 2174 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((-𝐴 · -𝑥) = 1 ↔ (-𝐴 · --𝑦) = 1))
2524rspcev 2830 . . . . . . . . . 10 ((-𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2621, 25sylan 281 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2720, 26sylbir 134 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2827adantl 275 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1)) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2915, 28rexlimddv 2588 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
30 recn 7886 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
31 recn 7886 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
32 mul2neg 8296 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3330, 31, 32syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3433eqeq1d 2174 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((-𝐴 · -𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
3534rexbidva 2463 . . . . . . 7 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3635adantr 274 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3729, 36mpbid 146 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
3837ex 114 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
39 ltxrlt 7964 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 < 𝐴))
401, 39mpan 421 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < 𝐴))
4140pm5.32i 450 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
42 ax-precex 7863 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
43 simpr 109 . . . . . . . 8 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
4443reximi 2563 . . . . . . 7 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4542, 44syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4641, 45sylbi 120 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4746ex 114 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
4838, 47jaod 707 . . 3 (𝐴 ∈ ℝ → ((𝐴 < 0 ∨ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
493, 48sylbid 149 . 2 (𝐴 ∈ ℝ → (𝐴 # 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
5049imp 123 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   < cltrr 7757   · cmul 7758   < clt 7933  -cneg 8070   # creap 8472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072  df-reap 8473
This theorem is referenced by:  rimul  8483  recexap  8550  rerecclap  8626
  Copyright terms: Public domain W3C validator