ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexre GIF version

Theorem recexre 8497
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
recexre ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 7920 . . . 4 0 ∈ ℝ
2 reapval 8495 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
31, 2mpan2 423 . . 3 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
4 lt0neg1 8387 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
5 renegcl 8180 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 ltxrlt 7985 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (0 < -𝐴 ↔ 0 < -𝐴))
71, 5, 6sylancr 412 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < -𝐴 ↔ 0 < -𝐴))
84, 7bitrd 187 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
98pm5.32i 451 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) ↔ (𝐴 ∈ ℝ ∧ 0 < -𝐴))
10 ax-precex 7884 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1))
11 simpr 109 . . . . . . . . . . 11 ((0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → (-𝐴 · 𝑦) = 1)
1211reximi 2567 . . . . . . . . . 10 (∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
1310, 12syl 14 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
145, 13sylan 281 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
159, 14sylbi 120 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
16 recn 7907 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1716negnegd 8221 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → --𝑦 = 𝑦)
1817oveq2d 5869 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (-𝐴 · --𝑦) = (-𝐴 · 𝑦))
1918eqeq1d 2179 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((-𝐴 · --𝑦) = 1 ↔ (-𝐴 · 𝑦) = 1))
2019pm5.32i 451 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) ↔ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1))
21 renegcl 8180 . . . . . . . . . 10 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
22 negeq 8112 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → -𝑥 = --𝑦)
2322oveq2d 5869 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (-𝐴 · -𝑥) = (-𝐴 · --𝑦))
2423eqeq1d 2179 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((-𝐴 · -𝑥) = 1 ↔ (-𝐴 · --𝑦) = 1))
2524rspcev 2834 . . . . . . . . . 10 ((-𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2621, 25sylan 281 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2720, 26sylbir 134 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2827adantl 275 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1)) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2915, 28rexlimddv 2592 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
30 recn 7907 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
31 recn 7907 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
32 mul2neg 8317 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3330, 31, 32syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3433eqeq1d 2179 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((-𝐴 · -𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
3534rexbidva 2467 . . . . . . 7 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3635adantr 274 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3729, 36mpbid 146 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
3837ex 114 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
39 ltxrlt 7985 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 < 𝐴))
401, 39mpan 422 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < 𝐴))
4140pm5.32i 451 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
42 ax-precex 7884 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
43 simpr 109 . . . . . . . 8 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
4443reximi 2567 . . . . . . 7 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4542, 44syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4641, 45sylbi 120 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4746ex 114 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
4838, 47jaod 712 . . 3 (𝐴 ∈ ℝ → ((𝐴 < 0 ∨ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
493, 48sylbid 149 . 2 (𝐴 ∈ ℝ → (𝐴 # 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
5049imp 123 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wrex 2449   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   < cltrr 7778   · cmul 7779   < clt 7954  -cneg 8091   # creap 8493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093  df-reap 8494
This theorem is referenced by:  rimul  8504  recexap  8571  rerecclap  8647
  Copyright terms: Public domain W3C validator