ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexre GIF version

Theorem recexre 8605
Description: Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
recexre ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexre
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 8026 . . . 4 0 ∈ ℝ
2 reapval 8603 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
31, 2mpan2 425 . . 3 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
4 lt0neg1 8495 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
5 renegcl 8287 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 ltxrlt 8092 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (0 < -𝐴 ↔ 0 < -𝐴))
71, 5, 6sylancr 414 . . . . . . . . . 10 (𝐴 ∈ ℝ → (0 < -𝐴 ↔ 0 < -𝐴))
84, 7bitrd 188 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
98pm5.32i 454 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) ↔ (𝐴 ∈ ℝ ∧ 0 < -𝐴))
10 ax-precex 7989 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1))
11 simpr 110 . . . . . . . . . . 11 ((0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → (-𝐴 · 𝑦) = 1)
1211reximi 2594 . . . . . . . . . 10 (∃𝑦 ∈ ℝ (0 < 𝑦 ∧ (-𝐴 · 𝑦) = 1) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
1310, 12syl 14 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
145, 13sylan 283 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < -𝐴) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
159, 14sylbi 121 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑦 ∈ ℝ (-𝐴 · 𝑦) = 1)
16 recn 8012 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1716negnegd 8328 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → --𝑦 = 𝑦)
1817oveq2d 5938 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (-𝐴 · --𝑦) = (-𝐴 · 𝑦))
1918eqeq1d 2205 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((-𝐴 · --𝑦) = 1 ↔ (-𝐴 · 𝑦) = 1))
2019pm5.32i 454 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) ↔ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1))
21 renegcl 8287 . . . . . . . . . 10 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
22 negeq 8219 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → -𝑥 = --𝑦)
2322oveq2d 5938 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (-𝐴 · -𝑥) = (-𝐴 · --𝑦))
2423eqeq1d 2205 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((-𝐴 · -𝑥) = 1 ↔ (-𝐴 · --𝑦) = 1))
2524rspcev 2868 . . . . . . . . . 10 ((-𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2621, 25sylan 283 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (-𝐴 · --𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2720, 26sylbir 135 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2827adantl 277 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝑦 ∈ ℝ ∧ (-𝐴 · 𝑦) = 1)) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
2915, 28rexlimddv 2619 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1)
30 recn 8012 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
31 recn 8012 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
32 mul2neg 8424 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3330, 31, 32syl2an 289 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 · -𝑥) = (𝐴 · 𝑥))
3433eqeq1d 2205 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((-𝐴 · -𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
3534rexbidva 2494 . . . . . . 7 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3635adantr 276 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (∃𝑥 ∈ ℝ (-𝐴 · -𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3729, 36mpbid 147 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
3837ex 115 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
39 ltxrlt 8092 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 < 𝐴))
401, 39mpan 424 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < 𝐴))
4140pm5.32i 454 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
42 ax-precex 7989 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
43 simpr 110 . . . . . . . 8 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
4443reximi 2594 . . . . . . 7 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4542, 44syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4641, 45sylbi 121 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4746ex 115 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
4838, 47jaod 718 . . 3 (𝐴 ∈ ℝ → ((𝐴 < 0 ∨ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
493, 48sylbid 150 . 2 (𝐴 ∈ ℝ → (𝐴 # 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
5049imp 124 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4033  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   < cltrr 7883   · cmul 7884   < clt 8061  -cneg 8198   # creap 8601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200  df-reap 8602
This theorem is referenced by:  rimul  8612  recexap  8680  rerecclap  8757
  Copyright terms: Public domain W3C validator