ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trirecip GIF version

Theorem trirecip 11442
Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
trirecip Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2

Proof of Theorem trirecip
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2cnd 8930 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
2 peano2nn 8869 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3 nnmulcl 8878 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ)
42, 3mpdan 418 . . . . 5 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℕ)
54nncnd 8871 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℂ)
64nnap0d 8903 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) # 0)
71, 5, 6divrecapd 8689 . . 3 (𝑘 ∈ ℕ → (2 / (𝑘 · (𝑘 + 1))) = (2 · (1 / (𝑘 · (𝑘 + 1)))))
87sumeq2i 11305 . 2 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1))))
9 nnuz 9501 . . . . 5 ℕ = (ℤ‘1)
10 1zzd 9218 . . . . 5 (⊤ → 1 ∈ ℤ)
11 simpr 109 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
124adantl 275 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ)
1312nnrecred 8904 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ)
14 id 19 . . . . . . . . 9 (𝑛 = 𝑘𝑛 = 𝑘)
15 oveq1 5849 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
1614, 15oveq12d 5860 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · (𝑛 + 1)) = (𝑘 · (𝑘 + 1)))
1716oveq2d 5858 . . . . . . 7 (𝑛 = 𝑘 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑘 · (𝑘 + 1))))
18 eqid 2165 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
1917, 18fvmptg 5562 . . . . . 6 ((𝑘 ∈ ℕ ∧ (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
2011, 13, 19syl2anc 409 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
214nnrecred 8904 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ)
2221recnd 7927 . . . . . 6 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2322adantl 275 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2418trireciplem 11441 . . . . . . 7 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1
2524a1i 9 . . . . . 6 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1)
26 climrel 11221 . . . . . . 7 Rel ⇝
2726releldmi 4843 . . . . . 6 (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
2825, 27syl 14 . . . . 5 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
29 2cnd 8930 . . . . 5 (⊤ → 2 ∈ ℂ)
309, 10, 20, 23, 28, 29isummulc2 11367 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))))
319, 10, 20, 23, 25isumclim 11362 . . . . 5 (⊤ → Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1))) = 1)
3231oveq2d 5858 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3330, 32eqtr3d 2200 . . 3 (⊤ → Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3433mptru 1352 . 2 Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)
35 2t1e2 9010 . 2 (2 · 1) = 2
368, 34, 353eqtri 2190 1 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wtru 1344  wcel 2136   class class class wbr 3982  cmpt 4043  dom cdm 4604  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  1c1 7754   + caddc 7756   · cmul 7758   / cdiv 8568  cn 8857  2c2 8908  seqcseq 10380  cli 11219  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator