| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trirecip | GIF version | ||
| Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| Ref | Expression |
|---|---|
| trirecip | ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd 9108 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ∈ ℂ) | |
| 2 | peano2nn 9047 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ) | |
| 3 | nnmulcl 9056 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ) | |
| 4 | 2, 3 | mpdan 421 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℕ) |
| 5 | 4 | nncnd 9049 | . . . 4 ⊢ (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℂ) |
| 6 | 4 | nnap0d 9081 | . . . 4 ⊢ (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) # 0) |
| 7 | 1, 5, 6 | divrecapd 8865 | . . 3 ⊢ (𝑘 ∈ ℕ → (2 / (𝑘 · (𝑘 + 1))) = (2 · (1 / (𝑘 · (𝑘 + 1))))) |
| 8 | 7 | sumeq2i 11617 | . 2 ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) |
| 9 | nnuz 9683 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | 1zzd 9398 | . . . . 5 ⊢ (⊤ → 1 ∈ ℤ) | |
| 11 | simpr 110 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 12 | 4 | adantl 277 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ) |
| 13 | 12 | nnrecred 9082 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ) |
| 14 | id 19 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → 𝑛 = 𝑘) | |
| 15 | oveq1 5950 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1)) | |
| 16 | 14, 15 | oveq12d 5961 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑛 · (𝑛 + 1)) = (𝑘 · (𝑘 + 1))) |
| 17 | 16 | oveq2d 5959 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑘 · (𝑘 + 1)))) |
| 18 | eqid 2204 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) | |
| 19 | 17, 18 | fvmptg 5654 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1)))) |
| 20 | 11, 13, 19 | syl2anc 411 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1)))) |
| 21 | 4 | nnrecred 9082 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ) |
| 22 | 21 | recnd 8100 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ) |
| 23 | 22 | adantl 277 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ) |
| 24 | 18 | trireciplem 11753 | . . . . . . 7 ⊢ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 |
| 25 | 24 | a1i 9 | . . . . . 6 ⊢ (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1) |
| 26 | climrel 11533 | . . . . . . 7 ⊢ Rel ⇝ | |
| 27 | 26 | releldmi 4916 | . . . . . 6 ⊢ (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ ) |
| 28 | 25, 27 | syl 14 | . . . . 5 ⊢ (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ ) |
| 29 | 2cnd 9108 | . . . . 5 ⊢ (⊤ → 2 ∈ ℂ) | |
| 30 | 9, 10, 20, 23, 28, 29 | isummulc2 11679 | . . . 4 ⊢ (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1))))) |
| 31 | 9, 10, 20, 23, 25 | isumclim 11674 | . . . . 5 ⊢ (⊤ → Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1))) = 1) |
| 32 | 31 | oveq2d 5959 | . . . 4 ⊢ (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)) |
| 33 | 30, 32 | eqtr3d 2239 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)) |
| 34 | 33 | mptru 1381 | . 2 ⊢ Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1) |
| 35 | 2t1e2 9189 | . 2 ⊢ (2 · 1) = 2 | |
| 36 | 8, 34, 35 | 3eqtri 2229 | 1 ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ⊤wtru 1373 ∈ wcel 2175 class class class wbr 4043 ↦ cmpt 4104 dom cdm 4674 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 ℝcr 7923 1c1 7925 + caddc 7927 · cmul 7929 / cdiv 8744 ℕcn 9035 2c2 9086 seqcseq 10590 ⇝ cli 11531 Σcsu 11606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-shft 11068 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |