Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  trirecip GIF version

Theorem trirecip 11303
 Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
trirecip Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2

Proof of Theorem trirecip
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2cnd 8818 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
2 peano2nn 8757 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3 nnmulcl 8766 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ)
42, 3mpdan 418 . . . . 5 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℕ)
54nncnd 8759 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℂ)
64nnap0d 8791 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) # 0)
71, 5, 6divrecapd 8578 . . 3 (𝑘 ∈ ℕ → (2 / (𝑘 · (𝑘 + 1))) = (2 · (1 / (𝑘 · (𝑘 + 1)))))
87sumeq2i 11166 . 2 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1))))
9 nnuz 9386 . . . . 5 ℕ = (ℤ‘1)
10 1zzd 9106 . . . . 5 (⊤ → 1 ∈ ℤ)
11 simpr 109 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
124adantl 275 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ)
1312nnrecred 8792 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ)
14 id 19 . . . . . . . . 9 (𝑛 = 𝑘𝑛 = 𝑘)
15 oveq1 5789 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
1614, 15oveq12d 5800 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · (𝑛 + 1)) = (𝑘 · (𝑘 + 1)))
1716oveq2d 5798 . . . . . . 7 (𝑛 = 𝑘 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑘 · (𝑘 + 1))))
18 eqid 2140 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
1917, 18fvmptg 5505 . . . . . 6 ((𝑘 ∈ ℕ ∧ (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
2011, 13, 19syl2anc 409 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
214nnrecred 8792 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ)
2221recnd 7819 . . . . . 6 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2322adantl 275 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2418trireciplem 11302 . . . . . . 7 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1
2524a1i 9 . . . . . 6 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1)
26 climrel 11082 . . . . . . 7 Rel ⇝
2726releldmi 4786 . . . . . 6 (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
2825, 27syl 14 . . . . 5 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
29 2cnd 8818 . . . . 5 (⊤ → 2 ∈ ℂ)
309, 10, 20, 23, 28, 29isummulc2 11228 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))))
319, 10, 20, 23, 25isumclim 11223 . . . . 5 (⊤ → Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1))) = 1)
3231oveq2d 5798 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3330, 32eqtr3d 2175 . . 3 (⊤ → Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3433mptru 1341 . 2 Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)
35 2t1e2 8898 . 2 (2 · 1) = 2
368, 34, 353eqtri 2165 1 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   = wceq 1332  ⊤wtru 1333   ∈ wcel 1481   class class class wbr 3937   ↦ cmpt 3997  dom cdm 4547  ‘cfv 5131  (class class class)co 5782  ℂcc 7643  ℝcr 7644  1c1 7646   + caddc 7648   · cmul 7650   / cdiv 8457  ℕcn 8745  2c2 8796  seqcseq 10250   ⇝ cli 11080  Σcsu 11155 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7736  ax-resscn 7737  ax-1cn 7738  ax-1re 7739  ax-icn 7740  ax-addcl 7741  ax-addrcl 7742  ax-mulcl 7743  ax-mulrcl 7744  ax-addcom 7745  ax-mulcom 7746  ax-addass 7747  ax-mulass 7748  ax-distr 7749  ax-i2m1 7750  ax-0lt1 7751  ax-1rid 7752  ax-0id 7753  ax-rnegex 7754  ax-precex 7755  ax-cnre 7756  ax-pre-ltirr 7757  ax-pre-ltwlin 7758  ax-pre-lttrn 7759  ax-pre-apti 7760  ax-pre-ltadd 7761  ax-pre-mulgt0 7762  ax-pre-mulext 7763  ax-arch 7764  ax-caucvg 7765 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7827  df-mnf 7828  df-xr 7829  df-ltxr 7830  df-le 7831  df-sub 7960  df-neg 7961  df-reap 8362  df-ap 8369  df-div 8458  df-inn 8746  df-2 8804  df-3 8805  df-4 8806  df-n0 9003  df-z 9080  df-uz 9352  df-q 9440  df-rp 9472  df-fz 9823  df-fzo 9952  df-seqfrec 10251  df-exp 10325  df-ihash 10555  df-shft 10620  df-cj 10647  df-re 10648  df-im 10649  df-rsqrt 10803  df-abs 10804  df-clim 11081  df-sumdc 11156 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator