ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trirecip GIF version

Theorem trirecip 11638
Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
trirecip Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2

Proof of Theorem trirecip
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2cnd 9049 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
2 peano2nn 8988 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3 nnmulcl 8997 . . . . . 6 ((𝑘 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ)
42, 3mpdan 421 . . . . 5 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℕ)
54nncnd 8990 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) ∈ ℂ)
64nnap0d 9022 . . . 4 (𝑘 ∈ ℕ → (𝑘 · (𝑘 + 1)) # 0)
71, 5, 6divrecapd 8806 . . 3 (𝑘 ∈ ℕ → (2 / (𝑘 · (𝑘 + 1))) = (2 · (1 / (𝑘 · (𝑘 + 1)))))
87sumeq2i 11501 . 2 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1))))
9 nnuz 9622 . . . . 5 ℕ = (ℤ‘1)
10 1zzd 9338 . . . . 5 (⊤ → 1 ∈ ℤ)
11 simpr 110 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
124adantl 277 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝑘 + 1)) ∈ ℕ)
1312nnrecred 9023 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ)
14 id 19 . . . . . . . . 9 (𝑛 = 𝑘𝑛 = 𝑘)
15 oveq1 5921 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
1614, 15oveq12d 5932 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · (𝑛 + 1)) = (𝑘 · (𝑘 + 1)))
1716oveq2d 5930 . . . . . . 7 (𝑛 = 𝑘 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑘 · (𝑘 + 1))))
18 eqid 2193 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
1917, 18fvmptg 5629 . . . . . 6 ((𝑘 ∈ ℕ ∧ (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
2011, 13, 19syl2anc 411 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))‘𝑘) = (1 / (𝑘 · (𝑘 + 1))))
214nnrecred 9023 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℝ)
2221recnd 8042 . . . . . 6 (𝑘 ∈ ℕ → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2322adantl 277 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 · (𝑘 + 1))) ∈ ℂ)
2418trireciplem 11637 . . . . . . 7 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1
2524a1i 9 . . . . . 6 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1)
26 climrel 11417 . . . . . . 7 Rel ⇝
2726releldmi 4897 . . . . . 6 (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ⇝ 1 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
2825, 27syl 14 . . . . 5 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) ∈ dom ⇝ )
29 2cnd 9049 . . . . 5 (⊤ → 2 ∈ ℂ)
309, 10, 20, 23, 28, 29isummulc2 11563 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))))
319, 10, 20, 23, 25isumclim 11558 . . . . 5 (⊤ → Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1))) = 1)
3231oveq2d 5930 . . . 4 (⊤ → (2 · Σ𝑘 ∈ ℕ (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3330, 32eqtr3d 2228 . . 3 (⊤ → Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1))
3433mptru 1373 . 2 Σ𝑘 ∈ ℕ (2 · (1 / (𝑘 · (𝑘 + 1)))) = (2 · 1)
35 2t1e2 9129 . 2 (2 · 1) = 2
368, 34, 353eqtri 2218 1 Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wtru 1365  wcel 2164   class class class wbr 4029  cmpt 4090  dom cdm 4657  cfv 5250  (class class class)co 5914  cc 7864  cr 7865  1c1 7867   + caddc 7869   · cmul 7871   / cdiv 8685  cn 8976  2c2 9027  seqcseq 10512  cli 11415  Σcsu 11490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4567  ax-iinf 4618  ax-cnex 7957  ax-resscn 7958  ax-1cn 7959  ax-1re 7960  ax-icn 7961  ax-addcl 7962  ax-addrcl 7963  ax-mulcl 7964  ax-mulrcl 7965  ax-addcom 7966  ax-mulcom 7967  ax-addass 7968  ax-mulass 7969  ax-distr 7970  ax-i2m1 7971  ax-0lt1 7972  ax-1rid 7973  ax-0id 7974  ax-rnegex 7975  ax-precex 7976  ax-cnre 7977  ax-pre-ltirr 7978  ax-pre-ltwlin 7979  ax-pre-lttrn 7980  ax-pre-apti 7981  ax-pre-ltadd 7982  ax-pre-mulgt0 7983  ax-pre-mulext 7984  ax-arch 7985  ax-caucvg 7986
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-po 4325  df-iso 4326  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4621  df-xp 4663  df-rel 4664  df-cnv 4665  df-co 4666  df-dm 4667  df-rn 4668  df-res 4669  df-ima 4670  df-iota 5211  df-fun 5252  df-fn 5253  df-f 5254  df-f1 5255  df-fo 5256  df-f1o 5257  df-fv 5258  df-isom 5259  df-riota 5869  df-ov 5917  df-oprab 5918  df-mpo 5919  df-1st 6188  df-2nd 6189  df-recs 6353  df-irdg 6418  df-frec 6439  df-1o 6464  df-oadd 6468  df-er 6582  df-en 6790  df-dom 6791  df-fin 6792  df-pnf 8050  df-mnf 8051  df-xr 8052  df-ltxr 8053  df-le 8054  df-sub 8186  df-neg 8187  df-reap 8588  df-ap 8595  df-div 8686  df-inn 8977  df-2 9035  df-3 9036  df-4 9037  df-n0 9235  df-z 9312  df-uz 9587  df-q 9679  df-rp 9714  df-fz 10069  df-fzo 10203  df-seqfrec 10513  df-exp 10604  df-ihash 10841  df-shft 10953  df-cj 10980  df-re 10981  df-im 10982  df-rsqrt 11136  df-abs 11137  df-clim 11416  df-sumdc 11491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator