ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserex GIF version

Theorem iserex 11280
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
iserex.2 (𝜑𝑁𝑍)
iserex.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
iserex (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iserex
StepHypRef Expression
1 seqeq1 10383 . . . . 5 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
21eleq1d 2235 . . . 4 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
32bicomd 140 . . 3 (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
43a1i 9 . 2 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )))
5 simpll 519 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝜑)
6 iserex.2 . . . . . . . . . . . 12 (𝜑𝑁𝑍)
7 clim2ser.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
86, 7eleqtrdi 2259 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ𝑀))
9 eluzelz 9475 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
108, 9syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
1110zcnd 9314 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
12 ax-1cn 7846 . . . . . . . . 9 1 ∈ ℂ
13 npcan 8107 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
1411, 12, 13sylancl 410 . . . . . . . 8 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1514seqeq1d 10386 . . . . . . 7 (𝜑 → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
165, 15syl 14 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
17 simplr 520 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ (ℤ𝑀))
1817, 7eleqtrrdi 2260 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍)
19 iserex.3 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
205, 19sylan 281 . . . . . . 7 ((((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
21 simpr 109 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
22 climdm 11236 . . . . . . . 8 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2321, 22sylib 121 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
247, 18, 20, 23clim2ser 11278 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
2516, 24eqbrtrrd 4006 . . . . 5 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
26 climrel 11221 . . . . . 6 Rel ⇝
2726releldmi 4843 . . . . 5 (seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
2825, 27syl 14 . . . 4 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
29 simpr 109 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ (ℤ𝑀))
3029, 7eleqtrrdi 2260 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ 𝑍)
3130adantr 274 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍)
32 simpll 519 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → 𝜑)
3332, 19sylan 281 . . . . . 6 ((((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3432, 15syl 14 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
35 simpr 109 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
36 climdm 11236 . . . . . . . 8 (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
3735, 36sylib 121 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
3834, 37eqbrtrd 4004 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
397, 31, 33, 38clim2ser2 11279 . . . . 5 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
4026releldmi 4843 . . . . 5 (seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4139, 40syl 14 . . . 4 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4228, 41impbida 586 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
4342ex 114 . 2 (𝜑 → ((𝑁 − 1) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )))
44 uzm1 9496 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
458, 44syl 14 . 2 (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
464, 43, 45mpjaod 708 1 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136   class class class wbr 3982  dom cdm 4604  cfv 5188  (class class class)co 5842  cc 7751  1c1 7754   + caddc 7756  cmin 8069  cz 9191  cuz 9466  seqcseq 10380  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-fz 9945  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  isumsplit  11432  isumrpcl  11435  geolim2  11453  cvgratz  11473  cvgratgt0  11474  mertenslemub  11475  mertenslemi1  11476  mertenslem2  11477  mertensabs  11478  eftlcvg  11628  trilpolemisumle  13917  trilpolemeq1  13919  trilpolemlt1  13920  nconstwlpolemgt0  13942
  Copyright terms: Public domain W3C validator