ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserex GIF version

Theorem iserex 11140
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
iserex.2 (𝜑𝑁𝑍)
iserex.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
iserex (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iserex
StepHypRef Expression
1 seqeq1 10252 . . . . 5 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
21eleq1d 2209 . . . 4 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
32bicomd 140 . . 3 (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
43a1i 9 . 2 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )))
5 simpll 519 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝜑)
6 iserex.2 . . . . . . . . . . . 12 (𝜑𝑁𝑍)
7 clim2ser.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
86, 7eleqtrdi 2233 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ𝑀))
9 eluzelz 9359 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
108, 9syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
1110zcnd 9198 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
12 ax-1cn 7737 . . . . . . . . 9 1 ∈ ℂ
13 npcan 7995 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
1411, 12, 13sylancl 410 . . . . . . . 8 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1514seqeq1d 10255 . . . . . . 7 (𝜑 → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
165, 15syl 14 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
17 simplr 520 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ (ℤ𝑀))
1817, 7eleqtrrdi 2234 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍)
19 iserex.3 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
205, 19sylan 281 . . . . . . 7 ((((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
21 simpr 109 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
22 climdm 11096 . . . . . . . 8 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2321, 22sylib 121 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
247, 18, 20, 23clim2ser 11138 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
2516, 24eqbrtrrd 3960 . . . . 5 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
26 climrel 11081 . . . . . 6 Rel ⇝
2726releldmi 4786 . . . . 5 (seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
2825, 27syl 14 . . . 4 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
29 simpr 109 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ (ℤ𝑀))
3029, 7eleqtrrdi 2234 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ 𝑍)
3130adantr 274 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍)
32 simpll 519 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → 𝜑)
3332, 19sylan 281 . . . . . 6 ((((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3432, 15syl 14 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
35 simpr 109 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
36 climdm 11096 . . . . . . . 8 (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
3735, 36sylib 121 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
3834, 37eqbrtrd 3958 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
397, 31, 33, 38clim2ser2 11139 . . . . 5 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
4026releldmi 4786 . . . . 5 (seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4139, 40syl 14 . . . 4 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4228, 41impbida 586 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
4342ex 114 . 2 (𝜑 → ((𝑁 − 1) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )))
44 uzm1 9380 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
458, 44syl 14 . 2 (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
464, 43, 45mpjaod 708 1 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 1481   class class class wbr 3937  dom cdm 4547  cfv 5131  (class class class)co 5782  cc 7642  1c1 7645   + caddc 7647  cmin 7957  cz 9078  cuz 9350  seqcseq 10249  cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-fz 9822  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  isumsplit  11292  isumrpcl  11295  geolim2  11313  cvgratz  11333  cvgratgt0  11334  mertenslemub  11335  mertenslemi1  11336  mertenslem2  11337  mertensabs  11338  eftlcvg  11430  trilpolemisumle  13406  trilpolemeq1  13408  trilpolemlt1  13409
  Copyright terms: Public domain W3C validator