| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmpt1res | GIF version | ||
| Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnmpt1res.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
| cnmpt1res.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt1res.5 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| cnmpt1res.6 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) |
| Ref | Expression |
|---|---|
| cnmpt1res | ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1res.5 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 2 | 1 | resmptd 5029 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 3 | cnmpt1res.6 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) | |
| 4 | cnmpt1res.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 5 | toponuni 14602 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 7 | 1, 6 | sseqtrd 3239 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
| 8 | eqid 2207 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | cnrest 14822 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿) ∧ 𝑌 ⊆ ∪ 𝐽) → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐿)) |
| 10 | 3, 7, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐿)) |
| 11 | cnmpt1res.2 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
| 12 | 11 | oveq1i 5977 | . . 3 ⊢ (𝐾 Cn 𝐿) = ((𝐽 ↾t 𝑌) Cn 𝐿) |
| 13 | 10, 12 | eleqtrrdi 2301 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ (𝐾 Cn 𝐿)) |
| 14 | 2, 13 | eqeltrrd 2285 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 ∪ cuni 3864 ↦ cmpt 4121 ↾ cres 4695 ‘cfv 5290 (class class class)co 5967 ↾t crest 13186 TopOnctopon 14597 Cn ccn 14772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-rest 13188 df-topgen 13207 df-top 14585 df-topon 14598 df-bases 14630 df-cn 14775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |