Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmpt1res | GIF version |
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
cnmpt1res.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
cnmpt1res.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt1res.5 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
cnmpt1res.6 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) |
Ref | Expression |
---|---|
cnmpt1res | ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1res.5 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
2 | 1 | resmptd 4942 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
3 | cnmpt1res.6 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) | |
4 | cnmpt1res.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
5 | toponuni 12807 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
7 | 1, 6 | sseqtrd 3185 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
8 | eqid 2170 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
9 | 8 | cnrest 13029 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿) ∧ 𝑌 ⊆ ∪ 𝐽) → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐿)) |
10 | 3, 7, 9 | syl2anc 409 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐿)) |
11 | cnmpt1res.2 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
12 | 11 | oveq1i 5863 | . . 3 ⊢ (𝐾 Cn 𝐿) = ((𝐽 ↾t 𝑌) Cn 𝐿) |
13 | 10, 12 | eleqtrrdi 2264 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ (𝐾 Cn 𝐿)) |
14 | 2, 13 | eqeltrrd 2248 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 ∪ cuni 3796 ↦ cmpt 4050 ↾ cres 4613 ‘cfv 5198 (class class class)co 5853 ↾t crest 12579 TopOnctopon 12802 Cn ccn 12979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-rest 12581 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 df-cn 12982 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |