![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmpt1res | GIF version |
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
cnmpt1res.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
cnmpt1res.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt1res.5 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
cnmpt1res.6 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) |
Ref | Expression |
---|---|
cnmpt1res | ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1res.5 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
2 | 1 | resmptd 4958 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
3 | cnmpt1res.6 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) | |
4 | cnmpt1res.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
5 | toponuni 13446 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
7 | 1, 6 | sseqtrd 3193 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
8 | eqid 2177 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
9 | 8 | cnrest 13666 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿) ∧ 𝑌 ⊆ ∪ 𝐽) → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐿)) |
10 | 3, 7, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐿)) |
11 | cnmpt1res.2 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
12 | 11 | oveq1i 5884 | . . 3 ⊢ (𝐾 Cn 𝐿) = ((𝐽 ↾t 𝑌) Cn 𝐿) |
13 | 10, 12 | eleqtrrdi 2271 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ (𝐾 Cn 𝐿)) |
14 | 2, 13 | eqeltrrd 2255 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ⊆ wss 3129 ∪ cuni 3809 ↦ cmpt 4064 ↾ cres 4628 ‘cfv 5216 (class class class)co 5874 ↾t crest 12682 TopOnctopon 13441 Cn ccn 13616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-map 6649 df-rest 12684 df-topgen 12703 df-top 13429 df-topon 13442 df-bases 13474 df-cn 13619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |