ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1res GIF version

Theorem cnmpt1res 14964
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2 𝐾 = (𝐽t 𝑌)
cnmpt1res.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt1res.5 (𝜑𝑌𝑋)
cnmpt1res.6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1res (𝜑 → (𝑥𝑌𝐴) ∈ (𝐾 Cn 𝐿))
Distinct variable groups:   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem cnmpt1res
StepHypRef Expression
1 cnmpt1res.5 . . 3 (𝜑𝑌𝑋)
21resmptd 5055 . 2 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) = (𝑥𝑌𝐴))
3 cnmpt1res.6 . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
4 cnmpt1res.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
5 toponuni 14683 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
64, 5syl 14 . . . . 5 (𝜑𝑋 = 𝐽)
71, 6sseqtrd 3262 . . . 4 (𝜑𝑌 𝐽)
8 eqid 2229 . . . . 5 𝐽 = 𝐽
98cnrest 14903 . . . 4 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿) ∧ 𝑌 𝐽) → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ ((𝐽t 𝑌) Cn 𝐿))
103, 7, 9syl2anc 411 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ ((𝐽t 𝑌) Cn 𝐿))
11 cnmpt1res.2 . . . 4 𝐾 = (𝐽t 𝑌)
1211oveq1i 6010 . . 3 (𝐾 Cn 𝐿) = ((𝐽t 𝑌) Cn 𝐿)
1310, 12eleqtrrdi 2323 . 2 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ (𝐾 Cn 𝐿))
142, 13eqeltrrd 2307 1 (𝜑 → (𝑥𝑌𝐴) ∈ (𝐾 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wss 3197   cuni 3887  cmpt 4144  cres 4720  cfv 5317  (class class class)co 6000  t crest 13267  TopOnctopon 14678   Cn ccn 14853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-rest 13269  df-topgen 13288  df-top 14666  df-topon 14679  df-bases 14711  df-cn 14856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator