| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mopnex | GIF version | ||
| Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| mopnex.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| mopnex | ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1rp 9779 | . . 3 ⊢ 1 ∈ ℝ+ | |
| 2 | eqid 2205 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )) | |
| 3 | 2 | bdmet 14974 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ+) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )) ∈ (Met‘𝑋)) |
| 4 | 1, 3 | mpan2 425 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )) ∈ (Met‘𝑋)) |
| 5 | rpxr 9783 | . . . 4 ⊢ (1 ∈ ℝ+ → 1 ∈ ℝ*) | |
| 6 | 1, 5 | ax-mp 5 | . . 3 ⊢ 1 ∈ ℝ* |
| 7 | 0lt1 8199 | . . 3 ⊢ 0 < 1 | |
| 8 | mopnex.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 9 | 2, 8 | bdmopn 14976 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ* ∧ 0 < 1) → 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )))) |
| 10 | 6, 7, 9 | mp3an23 1342 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )))) |
| 11 | fveq2 5576 | . . 3 ⊢ (𝑑 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )) → (MetOpen‘𝑑) = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )))) | |
| 12 | 11 | rspceeqv 2895 | . 2 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )) ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐷𝑦), 1}, ℝ*, < )))) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
| 13 | 4, 10, 12 | syl2anc 411 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 {cpr 3634 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 ∈ cmpo 5946 infcinf 7085 0cc0 7925 1c1 7926 ℝ*cxr 8106 < clt 8107 ℝ+crp 9775 ∞Metcxmet 14298 Metcmet 14299 MetOpencmopn 14303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-map 6737 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-xneg 9894 df-xadd 9895 df-icc 10017 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-topgen 13092 df-psmet 14305 df-xmet 14306 df-met 14307 df-bl 14308 df-mopn 14309 df-top 14470 df-bases 14515 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |