ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3d GIF version

Theorem seqeq3d 10529
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq3d (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))

Proof of Theorem seqeq3d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq3 10526 . 2 (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
31, 2syl 14 1 (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-seqfrec 10522
This theorem is referenced by:  seqeq123d  10530  seq3f1olemstep  10588  seq3f1olemp  10589  seqf1oglem2  10594  seqf1og  10595  exp3val  10615  sumeq1  11501  sumeq2  11505  summodc  11529  zsumdc  11530  fsum3  11533  isumz  11535  prodeq1f  11698  prodeq2w  11702  prodeq2  11703  prodmodc  11724  zproddc  11725  fprodseq  11729  prod1dc  11732  mulgval  13195  lgsval  15161  lgsval4  15177  lgsneg  15181  lgsmod  15183
  Copyright terms: Public domain W3C validator