| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq3d | GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq3 10661 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 seqcseq 10656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-cnv 4724 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-recs 6441 df-frec 6527 df-seqfrec 10657 |
| This theorem is referenced by: seqeq123d 10665 seq3f1olemstep 10723 seq3f1olemp 10724 seqf1oglem2 10729 seqf1og 10730 exp3val 10750 sumeq1 11852 sumeq2 11856 summodc 11880 zsumdc 11881 fsum3 11884 isumz 11886 prodeq1f 12049 prodeq2w 12053 prodeq2 12054 prodmodc 12075 zproddc 12076 fprodseq 12080 prod1dc 12083 mulgval 13645 lgsval 15668 lgsval4 15684 lgsneg 15688 lgsmod 15690 |
| Copyright terms: Public domain | W3C validator |