ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3d GIF version

Theorem seqeq3d 10685
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq3d (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))

Proof of Theorem seqeq3d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq3 10682 . 2 (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
31, 2syl 14 1 (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  seqcseq 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-recs 6457  df-frec 6543  df-seqfrec 10678
This theorem is referenced by:  seqeq123d  10686  seq3f1olemstep  10744  seq3f1olemp  10745  seqf1oglem2  10750  seqf1og  10751  exp3val  10771  sumeq1  11874  sumeq2  11878  summodc  11902  zsumdc  11903  fsum3  11906  isumz  11908  prodeq1f  12071  prodeq2w  12075  prodeq2  12076  prodmodc  12097  zproddc  12098  fprodseq  12102  prod1dc  12105  mulgval  13667  lgsval  15691  lgsval4  15707  lgsneg  15711  lgsmod  15713
  Copyright terms: Public domain W3C validator