![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seqeq3d | GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq3 10523 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 seqcseq 10518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-seqfrec 10519 |
This theorem is referenced by: seqeq123d 10527 seq3f1olemstep 10585 seq3f1olemp 10586 seqf1oglem2 10591 seqf1og 10592 exp3val 10612 sumeq1 11498 sumeq2 11502 summodc 11526 zsumdc 11527 fsum3 11530 isumz 11532 prodeq1f 11695 prodeq2w 11699 prodeq2 11700 prodmodc 11721 zproddc 11722 fprodseq 11726 prod1dc 11729 mulgval 13192 lgsval 15120 lgsval4 15136 lgsneg 15140 lgsmod 15142 |
Copyright terms: Public domain | W3C validator |