ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3d GIF version

Theorem seqeq3d 10613
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq3d (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))

Proof of Theorem seqeq3d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq3 10610 . 2 (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
31, 2syl 14 1 (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  seqcseq 10605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-cnv 4688  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-recs 6401  df-frec 6487  df-seqfrec 10606
This theorem is referenced by:  seqeq123d  10614  seq3f1olemstep  10672  seq3f1olemp  10673  seqf1oglem2  10678  seqf1og  10679  exp3val  10699  sumeq1  11716  sumeq2  11720  summodc  11744  zsumdc  11745  fsum3  11748  isumz  11750  prodeq1f  11913  prodeq2w  11917  prodeq2  11918  prodmodc  11939  zproddc  11940  fprodseq  11944  prod1dc  11947  mulgval  13508  lgsval  15531  lgsval4  15547  lgsneg  15551  lgsmod  15553
  Copyright terms: Public domain W3C validator