Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3d GIF version

Theorem seqeq3d 10233
 Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq3d (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))

Proof of Theorem seqeq3d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq3 10230 . 2 (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
31, 2syl 14 1 (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1331  seqcseq 10225 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-seqfrec 10226 This theorem is referenced by:  seqeq123d  10234  seq3f1olemstep  10281  seq3f1olemp  10282  exp3val  10302  sumeq1  11131  sumeq2  11135  summodc  11159  zsumdc  11160  fsum3  11163  isumz  11165  prodeq1f  11328  prodeq2w  11332  prodeq2  11333  prodmodc  11354
 Copyright terms: Public domain W3C validator