| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq3d | GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq3 10682 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 seqcseq 10677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-recs 6457 df-frec 6543 df-seqfrec 10678 |
| This theorem is referenced by: seqeq123d 10686 seq3f1olemstep 10744 seq3f1olemp 10745 seqf1oglem2 10750 seqf1og 10751 exp3val 10771 sumeq1 11874 sumeq2 11878 summodc 11902 zsumdc 11903 fsum3 11906 isumz 11908 prodeq1f 12071 prodeq2w 12075 prodeq2 12076 prodmodc 12097 zproddc 12098 fprodseq 12102 prod1dc 12105 mulgval 13667 lgsval 15691 lgsval4 15707 lgsneg 15711 lgsmod 15713 |
| Copyright terms: Public domain | W3C validator |