![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seqeq3d | GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq3d | ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq3 10464 | . 2 ⊢ (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 seqcseq 10459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-cnv 4646 df-dm 4648 df-rn 4649 df-res 4650 df-iota 5190 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-recs 6320 df-frec 6406 df-seqfrec 10460 |
This theorem is referenced by: seqeq123d 10468 seq3f1olemstep 10515 seq3f1olemp 10516 exp3val 10536 sumeq1 11377 sumeq2 11381 summodc 11405 zsumdc 11406 fsum3 11409 isumz 11411 prodeq1f 11574 prodeq2w 11578 prodeq2 11579 prodmodc 11600 zproddc 11601 fprodseq 11605 prod1dc 11608 mulgval 13025 lgsval 14758 lgsval4 14774 lgsneg 14778 lgsmod 14780 |
Copyright terms: Public domain | W3C validator |