ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3d GIF version

Theorem seqeq3d 10664
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq3d (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))

Proof of Theorem seqeq3d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq3 10661 . 2 (𝐴 = 𝐵 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
31, 2syl 14 1 (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-recs 6441  df-frec 6527  df-seqfrec 10657
This theorem is referenced by:  seqeq123d  10665  seq3f1olemstep  10723  seq3f1olemp  10724  seqf1oglem2  10729  seqf1og  10730  exp3val  10750  sumeq1  11852  sumeq2  11856  summodc  11880  zsumdc  11881  fsum3  11884  isumz  11886  prodeq1f  12049  prodeq2w  12053  prodeq2  12054  prodmodc  12075  zproddc  12076  fprodseq  12080  prod1dc  12083  mulgval  13645  lgsval  15668  lgsval4  15684  lgsneg  15688  lgsmod  15690
  Copyright terms: Public domain W3C validator