Theorem List for Intuitionistic Logic Explorer - 10401-10500   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | ceiqge 10401 | 
The ceiling of a real number is greater than or equal to that number.
     (Contributed by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ → 𝐴 ≤ -(⌊‘-𝐴)) | 
|   | 
| Theorem | ceilqge 10402 | 
The ceiling of a real number is greater than or equal to that number.
     (Contributed by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴)) | 
|   | 
| Theorem | ceiqm1l 10403 | 
One less than the ceiling of a real number is strictly less than that
     number.  (Contributed by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ →
 (-(⌊‘-𝐴)
 − 1) < 𝐴) | 
|   | 
| Theorem | ceilqm1lt 10404 | 
One less than the ceiling of a real number is strictly less than that
     number.  (Contributed by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ →
 ((⌈‘𝐴) −
 1) < 𝐴) | 
|   | 
| Theorem | ceiqle 10405 | 
The ceiling of a real number is the smallest integer greater than or equal
     to it.  (Contributed by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → -(⌊‘-𝐴) ≤ 𝐵) | 
|   | 
| Theorem | ceilqle 10406 | 
The ceiling of a real number is the smallest integer greater than or equal
     to it.  (Contributed by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → (⌈‘𝐴) ≤ 𝐵) | 
|   | 
| Theorem | ceilid 10407 | 
An integer is its own ceiling.  (Contributed by AV, 30-Nov-2018.)
 | 
| ⊢ (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴) | 
|   | 
| Theorem | ceilqidz 10408 | 
A rational number equals its ceiling iff it is an integer.  (Contributed
     by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴)) | 
|   | 
| Theorem | flqleceil 10409 | 
The floor of a rational number is less than or equal to its ceiling.
     (Contributed by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ (⌈‘𝐴)) | 
|   | 
| Theorem | flqeqceilz 10410 | 
A rational number is an integer iff its floor equals its ceiling.
     (Contributed by Jim Kingdon, 11-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴))) | 
|   | 
| Theorem | intqfrac2 10411 | 
Decompose a real into integer and fractional parts.  (Contributed by Jim
       Kingdon, 18-Oct-2021.)
 | 
| ⊢ 𝑍 = (⌊‘𝐴)   
 &   ⊢ 𝐹 = (𝐴 − 𝑍)    ⇒   ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) | 
|   | 
| Theorem | intfracq 10412 | 
Decompose a rational number, expressed as a ratio, into integer and
       fractional parts.  The fractional part has a tighter bound than that of
       intqfrac2 10411.  (Contributed by NM, 16-Aug-2008.)
 | 
| ⊢ 𝑍 = (⌊‘(𝑀 / 𝑁))    &   ⊢ 𝐹 = ((𝑀 / 𝑁) − 𝑍)    ⇒   ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹 ∧ 𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹))) | 
|   | 
| Theorem | flqdiv 10413 | 
Cancellation of the embedded floor of a real divided by an integer.
     (Contributed by Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) →
 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁))) | 
|   | 
| 4.6.2  The modulo (remainder)
 operation
 | 
|   | 
| Syntax | cmo 10414 | 
Extend class notation with the modulo operation.
 | 
| class  mod | 
|   | 
| Definition | df-mod 10415* | 
Define the modulo (remainder) operation.  See modqval 10416 for its value.
       For example, (5 mod 3) = 2 and (-7 mod 2) = 1.  As with
       df-fl 10360 we define this for first and second
arguments which are real and
       positive real, respectively, even though many theorems will need to be
       more restricted (for example, specify rational arguments).  (Contributed
       by NM, 10-Nov-2008.)
 | 
| ⊢  mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) | 
|   | 
| Theorem | modqval 10416 | 
The value of the modulo operation.  The modulo congruence notation of
       number theory, 𝐽≡𝐾 (modulo 𝑁), can be expressed in
our
       notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁).  Definition 1 in Knuth, The
       Art of Computer Programming, Vol.  I (1972), p. 38.  Knuth uses
"mod"
       for the operation and "modulo" for the congruence.  Unlike
Knuth, we
       restrict the second argument to positive numbers to simplify certain
       theorems.  (This also gives us future flexibility to extend it to any
       one of several different conventions for a zero or negative second
       argument, should there be an advantage in doing so.)  As with flqcl 10363 we
       only prove this for rationals although other particular kinds of real
       numbers may be possible.  (Contributed by Jim Kingdon, 16-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | 
|   | 
| Theorem | modqvalr 10417 | 
The value of the modulo operation (multiplication in reversed order).
     (Contributed by Jim Kingdon, 16-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵))) | 
|   | 
| Theorem | modqcl 10418 | 
Closure law for the modulo operation.  (Contributed by Jim Kingdon,
     16-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ ℚ) | 
|   | 
| Theorem | flqpmodeq 10419 | 
Partition of a division into its integer part and the remainder.
     (Contributed by Jim Kingdon, 16-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) →
 (((⌊‘(𝐴 /
 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴) | 
|   | 
| Theorem | modqcld 10420 | 
Closure law for the modulo operation.  (Contributed by Jim Kingdon,
       16-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℚ) | 
|   | 
| Theorem | modq0 10421 | 
𝐴 mod
𝐵 is zero iff 𝐴 is
evenly divisible by 𝐵.  (Contributed
     by Jim Kingdon, 17-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ)) | 
|   | 
| Theorem | mulqmod0 10422 | 
The product of an integer and a positive rational number is 0 modulo the
     positive real number.  (Contributed by Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 · 𝑀) mod 𝑀) = 0) | 
|   | 
| Theorem | negqmod0 10423 | 
𝐴
is divisible by 𝐵 iff its negative is.  (Contributed
by Jim
     Kingdon, 18-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0)) | 
|   | 
| Theorem | modqge0 10424 | 
The modulo operation is nonnegative.  (Contributed by Jim Kingdon,
     18-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵)) | 
|   | 
| Theorem | modqlt 10425 | 
The modulo operation is less than its second argument.  (Contributed by
     Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) < 𝐵) | 
|   | 
| Theorem | modqelico 10426 | 
Modular reduction produces a half-open interval.  (Contributed by Jim
     Kingdon, 18-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ (0[,)𝐵)) | 
|   | 
| Theorem | modqdiffl 10427 | 
The modulo operation differs from 𝐴 by an integer multiple of 𝐵.
     (Contributed by Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) | 
|   | 
| Theorem | modqdifz 10428 | 
The modulo operation differs from 𝐴 by an integer multiple of 𝐵.
     (Contributed by Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) | 
|   | 
| Theorem | modqfrac 10429 | 
The fractional part of a number is the number modulo 1.  (Contributed by
     Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴))) | 
|   | 
| Theorem | flqmod 10430 | 
The floor function expressed in terms of the modulo operation.
     (Contributed by Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) = (𝐴 − (𝐴 mod 1))) | 
|   | 
| Theorem | intqfrac 10431 | 
Break a number into its integer part and its fractional part.
     (Contributed by Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ (𝐴 ∈ ℚ → 𝐴 = ((⌊‘𝐴) + (𝐴 mod 1))) | 
|   | 
| Theorem | zmod10 10432 | 
An integer modulo 1 is 0.  (Contributed by Paul Chapman, 22-Jun-2011.)
 | 
| ⊢ (𝑁 ∈ ℤ → (𝑁 mod 1) = 0) | 
|   | 
| Theorem | zmod1congr 10433 | 
Two arbitrary integers are congruent modulo 1, see example 4 in
     [ApostolNT] p. 107.  (Contributed by AV,
21-Jul-2021.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 1) = (𝐵 mod 1)) | 
|   | 
| Theorem | modqmulnn 10434 | 
Move a positive integer in and out of a floor in the first argument of a
     modulo operation.  (Contributed by Jim Kingdon, 18-Oct-2021.)
 | 
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀))) | 
|   | 
| Theorem | modqvalp1 10435 | 
The value of the modulo operation (expressed with sum of denominator and
     nominator).  (Contributed by Jim Kingdon, 20-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 + 𝐵) − (((⌊‘(𝐴 / 𝐵)) + 1) · 𝐵)) = (𝐴 mod 𝐵)) | 
|   | 
| Theorem | zmodcl 10436 | 
Closure law for the modulo operation restricted to integers.  (Contributed
     by NM, 27-Nov-2008.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈
 ℕ0) | 
|   | 
| Theorem | zmodcld 10437 | 
Closure law for the modulo operation restricted to integers.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)    &   ⊢ (𝜑 → 𝐵 ∈ ℕ)   
 ⇒   ⊢ (𝜑 → (𝐴 mod 𝐵) ∈
 ℕ0) | 
|   | 
| Theorem | zmodfz 10438 | 
An integer mod 𝐵 lies in the first 𝐵
nonnegative integers.
     (Contributed by Jeff Madsen, 17-Jun-2010.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1))) | 
|   | 
| Theorem | zmodfzo 10439 | 
An integer mod 𝐵 lies in the first 𝐵
nonnegative integers.
     (Contributed by Stefan O'Rear, 6-Sep-2015.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵)) | 
|   | 
| Theorem | zmodfzp1 10440 | 
An integer mod 𝐵 lies in the first 𝐵 + 1
nonnegative integers.
     (Contributed by AV, 27-Oct-2018.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...𝐵)) | 
|   | 
| Theorem | modqid 10441 | 
Identity law for modulo.  (Contributed by Jim Kingdon, 21-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) | 
|   | 
| Theorem | modqid0 10442 | 
A positive real number modulo itself is 0.  (Contributed by Jim Kingdon,
     21-Oct-2021.)
 | 
| ⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 mod 𝑁) = 0) | 
|   | 
| Theorem | modqid2 10443 | 
Identity law for modulo.  (Contributed by Jim Kingdon, 21-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 𝐴 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵))) | 
|   | 
| Theorem | zmodid2 10444 | 
Identity law for modulo restricted to integers.  (Contributed by Paul
     Chapman, 22-Jun-2011.)
 | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) | 
|   | 
| Theorem | zmodidfzo 10445 | 
Identity law for modulo restricted to integers.  (Contributed by AV,
     27-Oct-2018.)
 | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0..^𝑁))) | 
|   | 
| Theorem | zmodidfzoimp 10446 | 
Identity law for modulo restricted to integers.  (Contributed by AV,
     27-Oct-2018.)
 | 
| ⊢ (𝑀 ∈ (0..^𝑁) → (𝑀 mod 𝑁) = 𝑀) | 
|   | 
| Theorem | q0mod 10447 | 
Special case: 0 modulo a positive real number is 0.  (Contributed by Jim
     Kingdon, 21-Oct-2021.)
 | 
| ⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0) | 
|   | 
| Theorem | q1mod 10448 | 
Special case: 1 modulo a real number greater than 1 is 1.  (Contributed by
     Jim Kingdon, 21-Oct-2021.)
 | 
| ⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | 
|   | 
| Theorem | modqabs 10449 | 
Absorption law for modulo.  (Contributed by Jim Kingdon,
       21-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐵)   
 &   ⊢ (𝜑 → 𝐶 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ≤ 𝐶)    ⇒   ⊢ (𝜑 → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) | 
|   | 
| Theorem | modqabs2 10450 | 
Absorption law for modulo.  (Contributed by Jim Kingdon, 21-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵)) | 
|   | 
| Theorem | modqcyc 10451 | 
The modulo operation is periodic.  (Contributed by Jim Kingdon,
     21-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) | 
|   | 
| Theorem | modqcyc2 10452 | 
The modulo operation is periodic.  (Contributed by Jim Kingdon,
     21-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) | 
|   | 
| Theorem | modqadd1 10453 | 
Addition property of the modulo operation.  (Contributed by Jim Kingdon,
       22-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ∈ ℚ)    &   ⊢ (𝜑 → 𝐶 ∈ ℚ)    &   ⊢ (𝜑 → 𝐷 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐷)   
 &   ⊢ (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))    ⇒   ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) | 
|   | 
| Theorem | modqaddabs 10454 | 
Absorption law for modulo.  (Contributed by Jim Kingdon, 22-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) | 
|   | 
| Theorem | modqaddmod 10455 | 
The sum of a number modulo a modulus and another number equals the sum of
     the two numbers modulo the same modulus.  (Contributed by Jim Kingdon,
     23-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀)) | 
|   | 
| Theorem | mulqaddmodid 10456 | 
The sum of a positive rational number less than an upper bound and the
     product of an integer and the upper bound is the positive rational number
     modulo the upper bound.  (Contributed by Jim Kingdon, 23-Oct-2021.)
 | 
| ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) | 
|   | 
| Theorem | mulp1mod1 10457 | 
The product of an integer and an integer greater than 1 increased by 1 is
     1 modulo the integer greater than 1.  (Contributed by AV, 15-Jul-2021.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2))
 → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) | 
|   | 
| Theorem | modqmuladd 10458* | 
Decomposition of an integer into a multiple of a modulus and a
       remainder.  (Contributed by Jim Kingdon, 23-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)    &   ⊢ (𝜑 → 𝐵 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ∈ (0[,)𝑀))    &   ⊢ (𝜑 → 𝑀 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝑀)    ⇒   ⊢ (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | 
|   | 
| Theorem | modqmuladdim 10459* | 
Implication of a decomposition of an integer into a multiple of a
       modulus and a remainder.  (Contributed by Jim Kingdon, 23-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | 
|   | 
| Theorem | modqmuladdnn0 10460* | 
Implication of a decomposition of a nonnegative integer into a multiple
       of a modulus and a remainder.  (Contributed by Jim Kingdon,
       23-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℚ ∧ 0 <
 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | 
|   | 
| Theorem | qnegmod 10461 | 
The negation of a number modulo a positive number is equal to the
     difference of the modulus and the number modulo the modulus.  (Contributed
     by Jim Kingdon, 24-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) | 
|   | 
| Theorem | m1modnnsub1 10462 | 
Minus one modulo a positive integer is equal to the integer minus one.
     (Contributed by AV, 14-Jul-2021.)
 | 
| ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | 
|   | 
| Theorem | m1modge3gt1 10463 | 
Minus one modulo an integer greater than two is greater than one.
     (Contributed by AV, 14-Jul-2021.)
 | 
| ⊢ (𝑀 ∈ (ℤ≥‘3)
 → 1 < (-1 mod 𝑀)) | 
|   | 
| Theorem | addmodid 10464 | 
The sum of a positive integer and a nonnegative integer less than the
     positive integer is equal to the nonnegative integer modulo the positive
     integer.  (Contributed by Alexander van der Vekens, 30-Oct-2018.)  (Proof
     shortened by AV, 5-Jul-2020.)
 | 
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) | 
|   | 
| Theorem | addmodidr 10465 | 
The sum of a positive integer and a nonnegative integer less than the
     positive integer is equal to the nonnegative integer modulo the positive
     integer.  (Contributed by AV, 19-Mar-2021.)
 | 
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴) | 
|   | 
| Theorem | modqadd2mod 10466 | 
The sum of a number modulo a modulus and another number equals the sum of
     the two numbers modulo the modulus.  (Contributed by Jim Kingdon,
     24-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀)) | 
|   | 
| Theorem | modqm1p1mod0 10467 | 
If a number modulo a modulus equals the modulus decreased by 1, the first
     number increased by 1 modulo the modulus equals 0.  (Contributed by Jim
     Kingdon, 24-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) | 
|   | 
| Theorem | modqltm1p1mod 10468 | 
If a number modulo a modulus is less than the modulus decreased by 1, the
     first number increased by 1 modulo the modulus equals the first number
     modulo the modulus, increased by 1.  (Contributed by Jim Kingdon,
     24-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1)) | 
|   | 
| Theorem | modqmul1 10469 | 
Multiplication property of the modulo operation.  Note that the
       multiplier 𝐶 must be an integer.  (Contributed by
Jim Kingdon,
       24-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ∈ ℚ)    &   ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ (𝜑 → 𝐷 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐷)   
 &   ⊢ (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) | 
|   | 
| Theorem | modqmul12d 10470 | 
Multiplication property of the modulo operation, see theorem 5.2(b) in
       [ApostolNT] p. 107.  (Contributed by
Jim Kingdon, 24-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)    &   ⊢ (𝜑 → 𝐵 ∈ ℤ)    &   ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ (𝜑 → 𝐷 ∈ ℤ)    &   ⊢ (𝜑 → 𝐸 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐸)   
 &   ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) | 
|   | 
| Theorem | modqnegd 10471 | 
Negation property of the modulo operation.  (Contributed by Jim Kingdon,
       24-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ∈ ℚ)    &   ⊢ (𝜑 → 𝐶 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐶)   
 &   ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶))    ⇒   ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) | 
|   | 
| Theorem | modqadd12d 10472 | 
Additive property of the modulo operation.  (Contributed by Jim Kingdon,
       25-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ∈ ℚ)    &   ⊢ (𝜑 → 𝐶 ∈ ℚ)    &   ⊢ (𝜑 → 𝐷 ∈ ℚ)    &   ⊢ (𝜑 → 𝐸 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐸)   
 &   ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))    ⇒   ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) | 
|   | 
| Theorem | modqsub12d 10473 | 
Subtraction property of the modulo operation.  (Contributed by Jim
       Kingdon, 25-Oct-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℚ)    &   ⊢ (𝜑 → 𝐵 ∈ ℚ)    &   ⊢ (𝜑 → 𝐶 ∈ ℚ)    &   ⊢ (𝜑 → 𝐷 ∈ ℚ)    &   ⊢ (𝜑 → 𝐸 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐸)   
 &   ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))    ⇒   ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) | 
|   | 
| Theorem | modqsubmod 10474 | 
The difference of a number modulo a modulus and another number equals the
     difference of the two numbers modulo the modulus.  (Contributed by Jim
     Kingdon, 25-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | 
|   | 
| Theorem | modqsubmodmod 10475 | 
The difference of a number modulo a modulus and another number modulo the
     same modulus equals the difference of the two numbers modulo the modulus.
     (Contributed by Jim Kingdon, 25-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | 
|   | 
| Theorem | q2txmodxeq0 10476 | 
Two times a positive number modulo the number is zero.  (Contributed by
     Jim Kingdon, 25-Oct-2021.)
 | 
| ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0) | 
|   | 
| Theorem | q2submod 10477 | 
If a number is between a modulus and twice the modulus, the first number
     modulo the modulus equals the first number minus the modulus.
     (Contributed by Jim Kingdon, 25-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) | 
|   | 
| Theorem | modifeq2int 10478 | 
If a nonnegative integer is less than twice a positive integer, the
     nonnegative integer modulo the positive integer equals the nonnegative
     integer or the nonnegative integer minus the positive integer.
     (Contributed by Alexander van der Vekens, 21-May-2018.)
 | 
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) | 
|   | 
| Theorem | modaddmodup 10479 | 
The sum of an integer modulo a positive integer and another integer minus
     the positive integer equals the sum of the two integers modulo the
     positive integer if the other integer is in the upper part of the range
     between 0 and the positive integer.  (Contributed by AV, 30-Oct-2018.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))) | 
|   | 
| Theorem | modaddmodlo 10480 | 
The sum of an integer modulo a positive integer and another integer equals
     the sum of the two integers modulo the positive integer if the other
     integer is in the lower part of the range between 0 and the positive
     integer.  (Contributed by AV, 30-Oct-2018.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))) | 
|   | 
| Theorem | modqmulmod 10481 | 
The product of a rational number modulo a modulus and an integer equals
     the product of the rational number and the integer modulo the modulus.
     (Contributed by Jim Kingdon, 25-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | 
|   | 
| Theorem | modqmulmodr 10482 | 
The product of an integer and a rational number modulo a modulus equals
     the product of the integer and the rational number modulo the modulus.
     (Contributed by Jim Kingdon, 26-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | 
|   | 
| Theorem | modqaddmulmod 10483 | 
The sum of a rational number and the product of a second rational number
     modulo a modulus and an integer equals the sum of the rational number and
     the product of the other rational number and the integer modulo the
     modulus.  (Contributed by Jim Kingdon, 26-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀)) | 
|   | 
| Theorem | modqdi 10484 | 
Distribute multiplication over a modulo operation.  (Contributed by Jim
     Kingdon, 26-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶))) | 
|   | 
| Theorem | modqsubdir 10485 | 
Distribute the modulo operation over a subtraction.  (Contributed by Jim
     Kingdon, 26-Oct-2021.)
 | 
| ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴 − 𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))) | 
|   | 
| Theorem | modqeqmodmin 10486 | 
A rational number equals the difference of the rational number and a
     modulus modulo the modulus.  (Contributed by Jim Kingdon, 26-Oct-2021.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) | 
|   | 
| Theorem | modfzo0difsn 10487* | 
For a number within a half-open range of nonnegative integers with one
       excluded integer there is a positive integer so that the number is equal
       to the sum of the positive integer and the excluded integer modulo the
       upper bound of the range.  (Contributed by AV, 19-Mar-2021.)
 | 
| ⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) | 
|   | 
| Theorem | modsumfzodifsn 10488 | 
The sum of a number within a half-open range of positive integers is an
     element of the corresponding open range of nonnegative integers with one
     excluded integer modulo the excluded integer.  (Contributed by AV,
     19-Mar-2021.)
 | 
| ⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | 
|   | 
| Theorem | modlteq 10489 | 
Two nonnegative integers less than the modulus are equal iff they are
     equal modulo the modulus.  (Contributed by AV, 14-Mar-2021.)
 | 
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽)) | 
|   | 
| Theorem | addmodlteq 10490 | 
Two nonnegative integers less than the modulus are equal iff the sums of
       these integer with another integer are equal modulo the modulus.
       (Contributed by AV, 20-Mar-2021.)
 | 
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | 
|   | 
| 4.6.3  Miscellaneous theorems about
 integers
 | 
|   | 
| Theorem | frec2uz0d 10491* | 
The mapping 𝐺 is a one-to-one mapping from ω onto upper
       integers that will be used to construct a recursive definition
       generator.  Ordinal natural number 0 maps to complex number 𝐶
       (normally 0 for the upper integers ℕ0 or 1 for the upper integers
       ℕ), 1 maps to 𝐶 + 1, etc.  This theorem
shows the value of
       𝐺 at ordinal natural number zero. 
(Contributed by Jim Kingdon,
       16-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    ⇒   ⊢ (𝜑 → (𝐺‘∅) = 𝐶) | 
|   | 
| Theorem | frec2uzzd 10492* | 
The value of 𝐺 (see frec2uz0d 10491) is an integer.  (Contributed by
         Jim Kingdon, 16-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)   
 &   ⊢ (𝜑 → 𝐴 ∈ ω)   
 ⇒   ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) | 
|   | 
| Theorem | frec2uzsucd 10493* | 
The value of 𝐺 (see frec2uz0d 10491) at a successor.  (Contributed by
         Jim Kingdon, 16-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)   
 &   ⊢ (𝜑 → 𝐴 ∈ ω)   
 ⇒   ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) | 
|   | 
| Theorem | frec2uzuzd 10494* | 
The value 𝐺 (see frec2uz0d 10491) at an ordinal natural number is in
         the upper integers.  (Contributed by Jim Kingdon, 16-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)   
 &   ⊢ (𝜑 → 𝐴 ∈ ω)   
 ⇒   ⊢ (𝜑 → (𝐺‘𝐴) ∈
 (ℤ≥‘𝐶)) | 
|   | 
| Theorem | frec2uzltd 10495* | 
Less-than relation for 𝐺 (see frec2uz0d 10491).  (Contributed by Jim
         Kingdon, 16-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)   
 &   ⊢ (𝜑 → 𝐴 ∈ ω)    &   ⊢ (𝜑 → 𝐵 ∈ ω)   
 ⇒   ⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) | 
|   | 
| Theorem | frec2uzlt2d 10496* | 
The mapping 𝐺 (see frec2uz0d 10491) preserves order.  (Contributed by
         Jim Kingdon, 16-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)   
 &   ⊢ (𝜑 → 𝐴 ∈ ω)    &   ⊢ (𝜑 → 𝐵 ∈ ω)   
 ⇒   ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | 
|   | 
| Theorem | frec2uzrand 10497* | 
Range of 𝐺 (see frec2uz0d 10491).  (Contributed by Jim Kingdon,
         17-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    ⇒   ⊢ (𝜑 → ran 𝐺 = (ℤ≥‘𝐶)) | 
|   | 
| Theorem | frec2uzf1od 10498* | 
𝐺
(see frec2uz0d 10491) is a one-to-one onto mapping.  (Contributed
         by Jim Kingdon, 17-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    ⇒   ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) | 
|   | 
| Theorem | frec2uzisod 10499* | 
𝐺
(see frec2uz0d 10491) is an isomorphism from natural ordinals to
         upper integers.  (Contributed by Jim Kingdon, 17-May-2020.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    ⇒   ⊢ (𝜑 → 𝐺 Isom E , < (ω,
 (ℤ≥‘𝐶))) | 
|   | 
| Theorem | frecuzrdgrrn 10500* | 
The function 𝑅 (used in the definition of the
recursive
           definition generator on upper integers) yields ordered pairs of
           integers and elements of 𝑆.  (Contributed by Jim Kingdon,
           28-Mar-2022.)
 | 
| ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)   
 &   ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉)    ⇒   ⊢ ((𝜑 ∧ 𝐷 ∈ ω) → (𝑅‘𝐷) ∈
 ((ℤ≥‘𝐶) × 𝑆)) |