| Intuitionistic Logic Explorer Theorem List (p. 105 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fzofzp1b 10401 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) | ||
| Theorem | elfzom1b 10402 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1)))) | ||
| Theorem | elfzonelfzo 10403 | If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) | ||
| Theorem | elfzomelpfzo 10404 | An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀 − 𝐿)..^(𝑁 − 𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁))) | ||
| Theorem | peano2fzor 10405 | A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzosplitsn 10406 | Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
| Theorem | fzosplitprm1 10407 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) | ||
| Theorem | fzosplitsni 10408 | Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^(𝐵 + 1)) ↔ (𝐶 ∈ (𝐴..^𝐵) ∨ 𝐶 = 𝐵))) | ||
| Theorem | fzisfzounsn 10409 | A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
| Theorem | fzostep1 10410 | Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) | ||
| Theorem | fzoshftral 10411* | Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 10272. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
| Theorem | fzind2 10412* | Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9530 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
| ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) & ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) | ||
| Theorem | exfzdc 10413* | Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓) ⇒ ⊢ (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓) | ||
| Theorem | fvinim0ffz 10414 | The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.) |
| ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) | ||
| Theorem | subfzo0 10415 | The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼 − 𝐽) ∧ (𝐼 − 𝐽) < 𝑁)) | ||
| Theorem | zsupcllemstep 10416* | Lemma for zsupcl 10418. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) ⇒ ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ≥‘𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ≥‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))) | ||
| Theorem | zsupcllemex 10417* | Lemma for zsupcl 10418. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) & ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) | ||
| Theorem | zsupcl 10418* | Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) & ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) ⇒ ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | zssinfcl 10419* | The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐵 ⊆ ℤ) & ⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ) ⇒ ⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵) | ||
| Theorem | infssuzex 10420* | Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) | ||
| Theorem | infssuzledc 10421* | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
| Theorem | infssuzcldc 10422* | The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
| Theorem | suprzubdc 10423* | The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | nninfdcex 10424* | A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | zsupssdc 10425* | An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 8088.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | suprzcl2dc 10426* | The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 8088.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
| Theorem | qtri3or 10427 | Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
| ⊢ ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | ||
| Theorem | qletric 10428 | Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | qlelttric 10429 | Rational trichotomy. (Contributed by Jim Kingdon, 7-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
| Theorem | qltnle 10430 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| Theorem | qdceq 10431 | Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵) | ||
| Theorem | qdclt 10432 | Rational < is decidable. (Contributed by Jim Kingdon, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 < 𝐵) | ||
| Theorem | qdcle 10433 | Rational ≤ is decidable. (Contributed by Jim Kingdon, 28-Oct-2025.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 ≤ 𝐵) | ||
| Theorem | exbtwnzlemstep 10434* | Lemma for exbtwnzlemex 10436. Induction step. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) | ||
| Theorem | exbtwnzlemshrink 10435* | Lemma for exbtwnzlemex 10436. Shrinking the range around 𝐴. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | exbtwnzlemex 10436* |
Existence of an integer so that a given real number is between the
integer and its successor. The real number must satisfy the
𝑛
≤ 𝐴 ∨ 𝐴 < 𝑛 hypothesis. For example either a
rational number or
a number which is irrational (in the sense of being apart from any
rational number) will meet this condition.
The proof starts by finding two integers which are less than and greater than 𝐴. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the 𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛 hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | exbtwnz 10437* | If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | qbtwnz 10438* | There is a unique greatest integer less than or equal to a rational number. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | rebtwn2zlemstep 10439* | Lemma for rebtwn2z 10441. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) | ||
| Theorem | rebtwn2zlemshrink 10440* | Lemma for rebtwn2z 10441. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ≥‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) | ||
| Theorem | rebtwn2z 10441* |
A real number can be bounded by integers above and below which are two
apart.
The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) | ||
| Theorem | qbtwnrelemcalc 10442 | Lemma for qbtwnre 10443. Calculations involved in showing the constructed rational number is less than 𝐵. (Contributed by Jim Kingdon, 14-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < (𝐴 · (2 · 𝑁))) & ⊢ (𝜑 → (1 / 𝑁) < (𝐵 − 𝐴)) ⇒ ⊢ (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵) | ||
| Theorem | qbtwnre 10443* | The rational numbers are dense in ℝ: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
| Theorem | qbtwnxr 10444* | The rational numbers are dense in ℝ*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
| Theorem | qavgle 10445 | The average of two rational numbers is less than or equal to at least one of them. (Contributed by Jim Kingdon, 3-Nov-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵)) | ||
| Theorem | ioo0 10446 | An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | ioom 10447* | An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵)) | ||
| Theorem | ico0 10448 | An empty open interval of extended reals. (Contributed by FL, 30-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | ioc0 10449 | An empty open interval of extended reals. (Contributed by FL, 30-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | dfrp2 10450 | Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
| ⊢ ℝ+ = (0(,)+∞) | ||
| Theorem | elicod 10451 | Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) | ||
| Theorem | icogelb 10452 | An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) | ||
| Theorem | elicore 10453 | A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ) | ||
| Theorem | xqltnle 10454 | "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +∞. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in ℕ0* or ℝ*, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.) |
| ⊢ (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| Syntax | cfl 10455 | Extend class notation with floor (greatest integer) function. |
| class ⌊ | ||
| Syntax | cceil 10456 | Extend class notation to include the ceiling function. |
| class ⌈ | ||
| Definition | df-fl 10457* |
Define the floor (greatest integer less than or equal to) function. See
flval 10459 for its value, flqlelt 10463 for its basic property, and flqcl 10460 for
its closure. For example, (⌊‘(3 / 2)) =
1 while
(⌊‘-(3 / 2)) = -2 (ex-fl 15999).
Although we define this on real numbers so that notations are similar to the Metamath Proof Explorer, in the absence of excluded middle few theorems will be possible for all real numbers. Imagine a real number which is around 2.99995 or 3.00001 . In order to determine whether its floor is 2 or 3, it would be necessary to compute the number to arbitrary precision. The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.) |
| ⊢ ⌊ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑦 ≤ 𝑥 ∧ 𝑥 < (𝑦 + 1)))) | ||
| Definition | df-ceil 10458 |
The ceiling (least integer greater than or equal to) function. Defined in
ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of
Mathematical Functions" , front introduction, "Common Notations
and
Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4.
See ceilqval 10495 for its value, ceilqge 10499 and ceilqm1lt 10501 for its basic
properties, and ceilqcl 10497 for its closure. For example,
(⌈‘(3 / 2)) = 2 while (⌈‘-(3 / 2)) = -1
(ex-ceil 16000).
As described in df-fl 10457 most theorems are only for rationals, not reals. The symbol ⌈ is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.) |
| ⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | ||
| Theorem | flval 10459* | Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | ||
| Theorem | flqcl 10460 | The floor (greatest integer) function yields an integer when applied to a rational (closure law). For a similar closure law for real numbers apart from any integer, see flapcl 10462. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | ||
| Theorem | apbtwnz 10461* | There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.) |
| ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | flapcl 10462* | The floor (greatest integer) function yields an integer when applied to a real number apart from any integer. For example, an irrational number (see for example sqrt2irrap 12668) would satisfy this condition. (Contributed by Jim Kingdon, 11-May-2022.) |
| ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → (⌊‘𝐴) ∈ ℤ) | ||
| Theorem | flqlelt 10463 | A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | ||
| Theorem | flqcld 10464 | The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) | ||
| Theorem | flqle 10465 | A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴) | ||
| Theorem | flqltp1 10466 | A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1)) | ||
| Theorem | qfraclt1 10467 | The fractional part of a rational number is less than one. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1) | ||
| Theorem | qfracge0 10468 | The fractional part of a rational number is nonnegative. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴))) | ||
| Theorem | flqge 10469 | The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) | ||
| Theorem | flqlt 10470 | The floor function value is less than the next integer. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (⌊‘𝐴) < 𝐵)) | ||
| Theorem | flid 10471 | An integer is its own floor. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) | ||
| Theorem | flqidm 10472 | The floor function is idempotent. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (⌊‘(⌊‘𝐴)) = (⌊‘𝐴)) | ||
| Theorem | flqidz 10473 | A rational number equals its floor iff it is an integer. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) | ||
| Theorem | flqltnz 10474 | If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) | ||
| Theorem | flqwordi 10475 | Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴 ≤ 𝐵) → (⌊‘𝐴) ≤ (⌊‘𝐵)) | ||
| Theorem | flqword2 10476 | Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴 ≤ 𝐵) → (⌊‘𝐵) ∈ (ℤ≥‘(⌊‘𝐴))) | ||
| Theorem | flqbi 10477 | A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) | ||
| Theorem | flqbi2 10478 | A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) | ||
| Theorem | adddivflid 10479 | The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) | ||
| Theorem | flqge0nn0 10480 | The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) | ||
| Theorem | flqge1nn 10481 | The floor of a number greater than or equal to 1 is a positive integer. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ) | ||
| Theorem | fldivnn0 10482 | The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℕ0) | ||
| Theorem | divfl0 10483 | The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0)) | ||
| Theorem | flqaddz 10484 | An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) | ||
| Theorem | flqzadd 10485 | An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℚ) → (⌊‘(𝑁 + 𝐴)) = (𝑁 + (⌊‘𝐴))) | ||
| Theorem | flqmulnn0 10486 | Move a nonnegative integer in and out of a floor. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) | ||
| Theorem | btwnzge0 10487 | A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) | ||
| Theorem | 2tnp1ge0ge0 10488 | Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁)) | ||
| Theorem | flhalf 10489 | Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2)))) | ||
| Theorem | fldivnn0le 10490 | The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) | ||
| Theorem | flltdivnn0lt 10491 | The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) | ||
| Theorem | fldiv4p1lem1div2 10492 | The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
| ⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)) | ||
| Theorem | fldiv4lem1div2uz2 10493 | The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | ||
| Theorem | fldiv4lem1div2 10494 | The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | ||
| Theorem | ceilqval 10495 | The value of the ceiling function. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (⌈‘𝐴) = -(⌊‘-𝐴)) | ||
| Theorem | ceiqcl 10496 | The ceiling function returns an integer (closure law). (Contributed by Jim Kingdon, 11-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → -(⌊‘-𝐴) ∈ ℤ) | ||
| Theorem | ceilqcl 10497 | Closure of the ceiling function. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℤ) | ||
| Theorem | ceiqge 10498 | The ceiling of a real number is greater than or equal to that number. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ≤ -(⌊‘-𝐴)) | ||
| Theorem | ceilqge 10499 | The ceiling of a real number is greater than or equal to that number. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴)) | ||
| Theorem | ceiqm1l 10500 | One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (-(⌊‘-𝐴) − 1) < 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |