Home | Intuitionistic Logic Explorer Theorem List (p. 105 of 137) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-exp 10401* |
Define exponentiation to nonnegative integer powers. For example,
(5↑2) = 25 (see ex-exp 13263).
This definition is not meant to be used directly; instead, exp0 10405 and expp1 10408 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts. 10-Jun-2005: The definition was extended to include zero exponents, so that 0↑0 = 1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (see 0exp0e1 10406). 4-Jun-2014: The definition was extended to include negative integer exponents. For example, (-3↑-2) = (1 / 9) (ex-exp 13263). The case 𝑥 = 0, 𝑦 < 0 gives the value (1 / 0), so we will avoid this case in our theorems. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.) |
⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | ||
Theorem | exp3vallem 10402 | Lemma for exp3val 10403. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0) | ||
Theorem | exp3val 10403 | Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) | ||
Theorem | expnnval 10404 | Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) | ||
Theorem | exp0 10405 | Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 10406) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | ||
Theorem | 0exp0e1 10406 | The zeroth power of zero equals one. See comment of exp0 10405. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (0↑0) = 1 | ||
Theorem | exp1 10407 | Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | ||
Theorem | expp1 10408 | Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expnegap0 10409 | Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expineg2 10410 | Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | ||
Theorem | expn1ap0 10411 | A number to the negative one power is the reciprocal. (Contributed by Jim Kingdon, 8-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴↑-1) = (1 / 𝐴)) | ||
Theorem | expcllem 10412* | Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.) |
⊢ 𝐹 ⊆ ℂ & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) & ⊢ 1 ∈ 𝐹 ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) | ||
Theorem | expcl2lemap 10413* | Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.) |
⊢ 𝐹 ⊆ ℂ & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) & ⊢ 1 ∈ 𝐹 & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 # 0) → (1 / 𝑥) ∈ 𝐹) ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴↑𝐵) ∈ 𝐹) | ||
Theorem | nnexpcl 10414 | Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) | ||
Theorem | nn0expcl 10415 | Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ0) | ||
Theorem | zexpcl 10416 | Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | ||
Theorem | qexpcl 10417 | Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℚ) | ||
Theorem | reexpcl 10418 | Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | expcl 10419 | Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | rpexpcl 10420 | Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | ||
Theorem | reexpclzap 10421 | Closure of exponentiation of reals. (Contributed by Jim Kingdon, 9-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | qexpclz 10422 | Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) | ||
Theorem | m1expcl2 10423 | Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1}) | ||
Theorem | m1expcl 10424 | Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℤ) | ||
Theorem | expclzaplem 10425* | Closure law for integer exponentiation. Lemma for expclzap 10426 and expap0i 10433. (Contributed by Jim Kingdon, 9-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) | ||
Theorem | expclzap 10426 | Closure law for integer exponentiation. (Contributed by Jim Kingdon, 9-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | nn0expcli 10427 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝐴↑𝑁) ∈ ℕ0 | ||
Theorem | nn0sqcl 10428 | The square of a nonnegative integer is a nonnegative integer. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0) | ||
Theorem | expm1t 10429 | Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) | ||
Theorem | 1exp 10430 | Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | ||
Theorem | expap0 10431 | Positive integer exponentiation is apart from zero iff its mantissa is apart from zero. That it is easier to prove this first, and then prove expeq0 10432 in terms of it, rather than the other way around, is perhaps an illustration of the maxim "In constructive analysis, the apartness is more basic [ than ] equality." (Remark of [Geuvers], p. 1). (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) # 0 ↔ 𝐴 # 0)) | ||
Theorem | expeq0 10432 | Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by NM, 23-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) | ||
Theorem | expap0i 10433 | Integer exponentiation is apart from zero if its mantissa is apart from zero. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) | ||
Theorem | expgt0 10434 | Nonnegative integer exponentiation with a positive mantissa is positive. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑𝑁)) | ||
Theorem | expnegzap 10435 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | 0exp 10436 | Value of zero raised to a positive integer power. (Contributed by NM, 19-Aug-2004.) |
⊢ (𝑁 ∈ ℕ → (0↑𝑁) = 0) | ||
Theorem | expge0 10437 | Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) | ||
Theorem | expge1 10438 | Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑𝑁)) | ||
Theorem | expgt1 10439 | Positive integer exponentiation with a mantissa greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴↑𝑁)) | ||
Theorem | mulexp 10440 | Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
Theorem | mulexpzap 10441 | Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
Theorem | exprecap 10442 | Nonnegative integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expadd 10443 | Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expaddzaplem 10444 | Lemma for expaddzap 10445. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expaddzap 10445 | Sum of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 10-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expmul 10446 | Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | expmulzap 10447 | Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | m1expeven 10448 | Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.) |
⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) | ||
Theorem | expsubap 10449 | Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) | ||
Theorem | expp1zap 10450 | Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expm1ap 10451 | Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) | ||
Theorem | expdivap 10452 | Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) | ||
Theorem | ltexp2a 10453 | Ordering relationship for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑀) < (𝐴↑𝑁)) | ||
Theorem | leexp2a 10454 | Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) | ||
Theorem | leexp2r 10455 | Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) | ||
Theorem | leexp1a 10456 | Weak mantissa ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) | ||
Theorem | exple1 10457 | Nonnegative integer exponentiation with a mantissa between 0 and 1 inclusive is less than or equal to 1. (Contributed by Paul Chapman, 29-Dec-2007.) (Revised by Mario Carneiro, 5-Jun-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ≤ 1) | ||
Theorem | expubnd 10458 | An upper bound on 𝐴↑𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴↑𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁))) | ||
Theorem | sqval 10459 | Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | ||
Theorem | sqneg 10460 | The square of the negative of a number.) (Contributed by NM, 15-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | ||
Theorem | sqsubswap 10461 | Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = ((𝐵 − 𝐴)↑2)) | ||
Theorem | sqcl 10462 | Closure of square. (Contributed by NM, 10-Aug-1999.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | ||
Theorem | sqmul 10463 | Distribution of square over multiplication. (Contributed by NM, 21-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) | ||
Theorem | sqeq0 10464 | A number is zero iff its square is zero. (Contributed by NM, 11-Mar-2006.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) | ||
Theorem | sqdivap 10465 | Distribution of square over division. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
Theorem | sqne0 10466 | A number is nonzero iff its square is nonzero. See also sqap0 10467 which is the same but with not equal changed to apart. (Contributed by NM, 11-Mar-2006.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0)) | ||
Theorem | sqap0 10467 | A number is apart from zero iff its square is apart from zero. (Contributed by Jim Kingdon, 13-Aug-2021.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) # 0 ↔ 𝐴 # 0)) | ||
Theorem | resqcl 10468 | Closure of the square of a real number. (Contributed by NM, 18-Oct-1999.) |
⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | ||
Theorem | sqgt0ap 10469 | The square of a nonzero real is positive. (Contributed by Jim Kingdon, 11-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴↑2)) | ||
Theorem | nnsqcl 10470 | The naturals are closed under squaring. (Contributed by Scott Fenton, 29-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ) | ||
Theorem | zsqcl 10471 | Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | ||
Theorem | qsqcl 10472 | The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | ||
Theorem | sq11 10473 | The square function is one-to-one for nonnegative reals. Also see sq11ap 10567 which would easily follow from this given excluded middle, but which for us is proved another way. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | ||
Theorem | lt2sq 10474 | The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 24-Feb-2006.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
Theorem | le2sq 10475 | The square function on nonnegative reals is monotonic. (Contributed by NM, 18-Oct-1999.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | le2sq2 10476 | The square of a 'less than or equal to' ordering. (Contributed by NM, 21-Mar-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵↑2)) | ||
Theorem | sqge0 10477 | A square of a real is nonnegative. (Contributed by NM, 18-Oct-1999.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | ||
Theorem | zsqcl2 10478 | The square of an integer is a nonnegative integer. (Contributed by Mario Carneiro, 18-Apr-2014.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0) | ||
Theorem | sumsqeq0 10479 | Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)) | ||
Theorem | sqvali 10480 | Value of square. Inference version. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴↑2) = (𝐴 · 𝐴) | ||
Theorem | sqcli 10481 | Closure of square. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴↑2) ∈ ℂ | ||
Theorem | sqeq0i 10482 | A number is zero iff its square is zero. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((𝐴↑2) = 0 ↔ 𝐴 = 0) | ||
Theorem | sqmuli 10483 | Distribution of square over multiplication. (Contributed by NM, 3-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)) | ||
Theorem | sqdivapi 10484 | Distribution of square over division. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0 ⇒ ⊢ ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)) | ||
Theorem | resqcli 10485 | Closure of square in reals. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴↑2) ∈ ℝ | ||
Theorem | sqgt0api 10486 | The square of a nonzero real is positive. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 # 0 → 0 < (𝐴↑2)) | ||
Theorem | sqge0i 10487 | A square of a real is nonnegative. (Contributed by NM, 3-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 0 ≤ (𝐴↑2) | ||
Theorem | lt2sqi 10488 | The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 12-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
Theorem | le2sqi 10489 | The square function on nonnegative reals is monotonic. (Contributed by NM, 12-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | sq11i 10490 | The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | ||
Theorem | sq0 10491 | The square of 0 is 0. (Contributed by NM, 6-Jun-2006.) |
⊢ (0↑2) = 0 | ||
Theorem | sq0i 10492 | If a number is zero, its square is zero. (Contributed by FL, 10-Dec-2006.) |
⊢ (𝐴 = 0 → (𝐴↑2) = 0) | ||
Theorem | sq0id 10493 | If a number is zero, its square is zero. Deduction form of sq0i 10492. Converse of sqeq0d 10532. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 = 0) ⇒ ⊢ (𝜑 → (𝐴↑2) = 0) | ||
Theorem | sq1 10494 | The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
⊢ (1↑2) = 1 | ||
Theorem | neg1sqe1 10495 | -1 squared is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (-1↑2) = 1 | ||
Theorem | sq2 10496 | The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
⊢ (2↑2) = 4 | ||
Theorem | sq3 10497 | The square of 3 is 9. (Contributed by NM, 26-Apr-2006.) |
⊢ (3↑2) = 9 | ||
Theorem | sq4e2t8 10498 | The square of 4 is 2 times 8. (Contributed by AV, 20-Jul-2021.) |
⊢ (4↑2) = (2 · 8) | ||
Theorem | cu2 10499 | The cube of 2 is 8. (Contributed by NM, 2-Aug-2004.) |
⊢ (2↑3) = 8 | ||
Theorem | irec 10500 | The reciprocal of i. (Contributed by NM, 11-Oct-1999.) |
⊢ (1 / i) = -i |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |