Theorem List for Intuitionistic Logic Explorer - 10401-10500 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | mulqmod0 10401 |
The product of an integer and a positive rational number is 0 modulo the
positive real number. (Contributed by Jim Kingdon, 18-Oct-2021.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 · 𝑀) mod 𝑀) = 0) |
|
Theorem | negqmod0 10402 |
𝐴
is divisible by 𝐵 iff its negative is. (Contributed
by Jim
Kingdon, 18-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0)) |
|
Theorem | modqge0 10403 |
The modulo operation is nonnegative. (Contributed by Jim Kingdon,
18-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵)) |
|
Theorem | modqlt 10404 |
The modulo operation is less than its second argument. (Contributed by
Jim Kingdon, 18-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) < 𝐵) |
|
Theorem | modqelico 10405 |
Modular reduction produces a half-open interval. (Contributed by Jim
Kingdon, 18-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ (0[,)𝐵)) |
|
Theorem | modqdiffl 10406 |
The modulo operation differs from 𝐴 by an integer multiple of 𝐵.
(Contributed by Jim Kingdon, 18-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) |
|
Theorem | modqdifz 10407 |
The modulo operation differs from 𝐴 by an integer multiple of 𝐵.
(Contributed by Jim Kingdon, 18-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) |
|
Theorem | modqfrac 10408 |
The fractional part of a number is the number modulo 1. (Contributed by
Jim Kingdon, 18-Oct-2021.)
|
⊢ (𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴))) |
|
Theorem | flqmod 10409 |
The floor function expressed in terms of the modulo operation.
(Contributed by Jim Kingdon, 18-Oct-2021.)
|
⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) = (𝐴 − (𝐴 mod 1))) |
|
Theorem | intqfrac 10410 |
Break a number into its integer part and its fractional part.
(Contributed by Jim Kingdon, 18-Oct-2021.)
|
⊢ (𝐴 ∈ ℚ → 𝐴 = ((⌊‘𝐴) + (𝐴 mod 1))) |
|
Theorem | zmod10 10411 |
An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.)
|
⊢ (𝑁 ∈ ℤ → (𝑁 mod 1) = 0) |
|
Theorem | zmod1congr 10412 |
Two arbitrary integers are congruent modulo 1, see example 4 in
[ApostolNT] p. 107. (Contributed by AV,
21-Jul-2021.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 1) = (𝐵 mod 1)) |
|
Theorem | modqmulnn 10413 |
Move a positive integer in and out of a floor in the first argument of a
modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
|
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀))) |
|
Theorem | modqvalp1 10414 |
The value of the modulo operation (expressed with sum of denominator and
nominator). (Contributed by Jim Kingdon, 20-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 + 𝐵) − (((⌊‘(𝐴 / 𝐵)) + 1) · 𝐵)) = (𝐴 mod 𝐵)) |
|
Theorem | zmodcl 10415 |
Closure law for the modulo operation restricted to integers. (Contributed
by NM, 27-Nov-2008.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈
ℕ0) |
|
Theorem | zmodcld 10416 |
Closure law for the modulo operation restricted to integers.
(Contributed by Mario Carneiro, 28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝐴 mod 𝐵) ∈
ℕ0) |
|
Theorem | zmodfz 10417 |
An integer mod 𝐵 lies in the first 𝐵
nonnegative integers.
(Contributed by Jeff Madsen, 17-Jun-2010.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1))) |
|
Theorem | zmodfzo 10418 |
An integer mod 𝐵 lies in the first 𝐵
nonnegative integers.
(Contributed by Stefan O'Rear, 6-Sep-2015.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵)) |
|
Theorem | zmodfzp1 10419 |
An integer mod 𝐵 lies in the first 𝐵 + 1
nonnegative integers.
(Contributed by AV, 27-Oct-2018.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...𝐵)) |
|
Theorem | modqid 10420 |
Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) |
|
Theorem | modqid0 10421 |
A positive real number modulo itself is 0. (Contributed by Jim Kingdon,
21-Oct-2021.)
|
⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 mod 𝑁) = 0) |
|
Theorem | modqid2 10422 |
Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 𝐴 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵))) |
|
Theorem | zmodid2 10423 |
Identity law for modulo restricted to integers. (Contributed by Paul
Chapman, 22-Jun-2011.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) |
|
Theorem | zmodidfzo 10424 |
Identity law for modulo restricted to integers. (Contributed by AV,
27-Oct-2018.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0..^𝑁))) |
|
Theorem | zmodidfzoimp 10425 |
Identity law for modulo restricted to integers. (Contributed by AV,
27-Oct-2018.)
|
⊢ (𝑀 ∈ (0..^𝑁) → (𝑀 mod 𝑁) = 𝑀) |
|
Theorem | q0mod 10426 |
Special case: 0 modulo a positive real number is 0. (Contributed by Jim
Kingdon, 21-Oct-2021.)
|
⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0) |
|
Theorem | q1mod 10427 |
Special case: 1 modulo a real number greater than 1 is 1. (Contributed by
Jim Kingdon, 21-Oct-2021.)
|
⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) |
|
Theorem | modqabs 10428 |
Absorption law for modulo. (Contributed by Jim Kingdon,
21-Oct-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐵)
& ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) |
|
Theorem | modqabs2 10429 |
Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵)) |
|
Theorem | modqcyc 10430 |
The modulo operation is periodic. (Contributed by Jim Kingdon,
21-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) |
|
Theorem | modqcyc2 10431 |
The modulo operation is periodic. (Contributed by Jim Kingdon,
21-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) |
|
Theorem | modqadd1 10432 |
Addition property of the modulo operation. (Contributed by Jim Kingdon,
22-Oct-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐷)
& ⊢ (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) |
|
Theorem | modqaddabs 10433 |
Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) |
|
Theorem | modqaddmod 10434 |
The sum of a number modulo a modulus and another number equals the sum of
the two numbers modulo the same modulus. (Contributed by Jim Kingdon,
23-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀)) |
|
Theorem | mulqaddmodid 10435 |
The sum of a positive rational number less than an upper bound and the
product of an integer and the upper bound is the positive rational number
modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.)
|
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
|
Theorem | mulp1mod1 10436 |
The product of an integer and an integer greater than 1 increased by 1 is
1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2))
→ (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) |
|
Theorem | modqmuladd 10437* |
Decomposition of an integer into a multiple of a modulus and a
remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ (0[,)𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝑀) ⇒ ⊢ (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
|
Theorem | modqmuladdim 10438* |
Implication of a decomposition of an integer into a multiple of a
modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
|
Theorem | modqmuladdnn0 10439* |
Implication of a decomposition of a nonnegative integer into a multiple
of a modulus and a remainder. (Contributed by Jim Kingdon,
23-Oct-2021.)
|
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℚ ∧ 0 <
𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
|
Theorem | qnegmod 10440 |
The negation of a number modulo a positive number is equal to the
difference of the modulus and the number modulo the modulus. (Contributed
by Jim Kingdon, 24-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) |
|
Theorem | m1modnnsub1 10441 |
Minus one modulo a positive integer is equal to the integer minus one.
(Contributed by AV, 14-Jul-2021.)
|
⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) |
|
Theorem | m1modge3gt1 10442 |
Minus one modulo an integer greater than two is greater than one.
(Contributed by AV, 14-Jul-2021.)
|
⊢ (𝑀 ∈ (ℤ≥‘3)
→ 1 < (-1 mod 𝑀)) |
|
Theorem | addmodid 10443 |
The sum of a positive integer and a nonnegative integer less than the
positive integer is equal to the nonnegative integer modulo the positive
integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof
shortened by AV, 5-Jul-2020.)
|
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) |
|
Theorem | addmodidr 10444 |
The sum of a positive integer and a nonnegative integer less than the
positive integer is equal to the nonnegative integer modulo the positive
integer. (Contributed by AV, 19-Mar-2021.)
|
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴) |
|
Theorem | modqadd2mod 10445 |
The sum of a number modulo a modulus and another number equals the sum of
the two numbers modulo the modulus. (Contributed by Jim Kingdon,
24-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀)) |
|
Theorem | modqm1p1mod0 10446 |
If a number modulo a modulus equals the modulus decreased by 1, the first
number increased by 1 modulo the modulus equals 0. (Contributed by Jim
Kingdon, 24-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) |
|
Theorem | modqltm1p1mod 10447 |
If a number modulo a modulus is less than the modulus decreased by 1, the
first number increased by 1 modulo the modulus equals the first number
modulo the modulus, increased by 1. (Contributed by Jim Kingdon,
24-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1)) |
|
Theorem | modqmul1 10448 |
Multiplication property of the modulo operation. Note that the
multiplier 𝐶 must be an integer. (Contributed by
Jim Kingdon,
24-Oct-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐷)
& ⊢ (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) |
|
Theorem | modqmul12d 10449 |
Multiplication property of the modulo operation, see theorem 5.2(b) in
[ApostolNT] p. 107. (Contributed by
Jim Kingdon, 24-Oct-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐸)
& ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
|
Theorem | modqnegd 10450 |
Negation property of the modulo operation. (Contributed by Jim Kingdon,
24-Oct-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐶)
& ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶)) ⇒ ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) |
|
Theorem | modqadd12d 10451 |
Additive property of the modulo operation. (Contributed by Jim Kingdon,
25-Oct-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 𝐸 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐸)
& ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) |
|
Theorem | modqsub12d 10452 |
Subtraction property of the modulo operation. (Contributed by Jim
Kingdon, 25-Oct-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 𝐸 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐸)
& ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
|
Theorem | modqsubmod 10453 |
The difference of a number modulo a modulus and another number equals the
difference of the two numbers modulo the modulus. (Contributed by Jim
Kingdon, 25-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) |
|
Theorem | modqsubmodmod 10454 |
The difference of a number modulo a modulus and another number modulo the
same modulus equals the difference of the two numbers modulo the modulus.
(Contributed by Jim Kingdon, 25-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) |
|
Theorem | q2txmodxeq0 10455 |
Two times a positive number modulo the number is zero. (Contributed by
Jim Kingdon, 25-Oct-2021.)
|
⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0) |
|
Theorem | q2submod 10456 |
If a number is between a modulus and twice the modulus, the first number
modulo the modulus equals the first number minus the modulus.
(Contributed by Jim Kingdon, 25-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |
|
Theorem | modifeq2int 10457 |
If a nonnegative integer is less than twice a positive integer, the
nonnegative integer modulo the positive integer equals the nonnegative
integer or the nonnegative integer minus the positive integer.
(Contributed by Alexander van der Vekens, 21-May-2018.)
|
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
|
Theorem | modaddmodup 10458 |
The sum of an integer modulo a positive integer and another integer minus
the positive integer equals the sum of the two integers modulo the
positive integer if the other integer is in the upper part of the range
between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))) |
|
Theorem | modaddmodlo 10459 |
The sum of an integer modulo a positive integer and another integer equals
the sum of the two integers modulo the positive integer if the other
integer is in the lower part of the range between 0 and the positive
integer. (Contributed by AV, 30-Oct-2018.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))) |
|
Theorem | modqmulmod 10460 |
The product of a rational number modulo a modulus and an integer equals
the product of the rational number and the integer modulo the modulus.
(Contributed by Jim Kingdon, 25-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) |
|
Theorem | modqmulmodr 10461 |
The product of an integer and a rational number modulo a modulus equals
the product of the integer and the rational number modulo the modulus.
(Contributed by Jim Kingdon, 26-Oct-2021.)
|
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) |
|
Theorem | modqaddmulmod 10462 |
The sum of a rational number and the product of a second rational number
modulo a modulus and an integer equals the sum of the rational number and
the product of the other rational number and the integer modulo the
modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀)) |
|
Theorem | modqdi 10463 |
Distribute multiplication over a modulo operation. (Contributed by Jim
Kingdon, 26-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶))) |
|
Theorem | modqsubdir 10464 |
Distribute the modulo operation over a subtraction. (Contributed by Jim
Kingdon, 26-Oct-2021.)
|
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴 − 𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))) |
|
Theorem | modqeqmodmin 10465 |
A rational number equals the difference of the rational number and a
modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) |
|
Theorem | modfzo0difsn 10466* |
For a number within a half-open range of nonnegative integers with one
excluded integer there is a positive integer so that the number is equal
to the sum of the positive integer and the excluded integer modulo the
upper bound of the range. (Contributed by AV, 19-Mar-2021.)
|
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) |
|
Theorem | modsumfzodifsn 10467 |
The sum of a number within a half-open range of positive integers is an
element of the corresponding open range of nonnegative integers with one
excluded integer modulo the excluded integer. (Contributed by AV,
19-Mar-2021.)
|
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) |
|
Theorem | modlteq 10468 |
Two nonnegative integers less than the modulus are equal iff they are
equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
|
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽)) |
|
Theorem | addmodlteq 10469 |
Two nonnegative integers less than the modulus are equal iff the sums of
these integer with another integer are equal modulo the modulus.
(Contributed by AV, 20-Mar-2021.)
|
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) |
|
4.6.3 Miscellaneous theorems about
integers
|
|
Theorem | frec2uz0d 10470* |
The mapping 𝐺 is a one-to-one mapping from ω onto upper
integers that will be used to construct a recursive definition
generator. Ordinal natural number 0 maps to complex number 𝐶
(normally 0 for the upper integers ℕ0 or 1 for the upper integers
ℕ), 1 maps to 𝐶 + 1, etc. This theorem
shows the value of
𝐺 at ordinal natural number zero.
(Contributed by Jim Kingdon,
16-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
|
Theorem | frec2uzzd 10471* |
The value of 𝐺 (see frec2uz0d 10470) is an integer. (Contributed by
Jim Kingdon, 16-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ ω)
⇒ ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
|
Theorem | frec2uzsucd 10472* |
The value of 𝐺 (see frec2uz0d 10470) at a successor. (Contributed by
Jim Kingdon, 16-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ ω)
⇒ ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
|
Theorem | frec2uzuzd 10473* |
The value 𝐺 (see frec2uz0d 10470) at an ordinal natural number is in
the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ ω)
⇒ ⊢ (𝜑 → (𝐺‘𝐴) ∈
(ℤ≥‘𝐶)) |
|
Theorem | frec2uzltd 10474* |
Less-than relation for 𝐺 (see frec2uz0d 10470). (Contributed by Jim
Kingdon, 16-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω)
⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
|
Theorem | frec2uzlt2d 10475* |
The mapping 𝐺 (see frec2uz0d 10470) preserves order. (Contributed by
Jim Kingdon, 16-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω)
⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
|
Theorem | frec2uzrand 10476* |
Range of 𝐺 (see frec2uz0d 10470). (Contributed by Jim Kingdon,
17-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → ran 𝐺 = (ℤ≥‘𝐶)) |
|
Theorem | frec2uzf1od 10477* |
𝐺
(see frec2uz0d 10470) is a one-to-one onto mapping. (Contributed
by Jim Kingdon, 17-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
|
Theorem | frec2uzisod 10478* |
𝐺
(see frec2uz0d 10470) is an isomorphism from natural ordinals to
upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → 𝐺 Isom E , < (ω,
(ℤ≥‘𝐶))) |
|
Theorem | frecuzrdgrrn 10479* |
The function 𝑅 (used in the definition of the
recursive
definition generator on upper integers) yields ordered pairs of
integers and elements of 𝑆. (Contributed by Jim Kingdon,
28-Mar-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ ω) → (𝑅‘𝐷) ∈
((ℤ≥‘𝐶) × 𝑆)) |
|
Theorem | frec2uzrdg 10480* |
A helper lemma for the value of a recursive definition generator on
upper integers (typically either ℕ or
ℕ0) with
characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴.
This lemma shows that evaluating 𝑅 at an element of ω
gives an ordered pair whose first element is the index (translated
from ω to (ℤ≥‘𝐶)). See comment in frec2uz0d 10470
which describes 𝐺 and the index translation.
(Contributed by
Jim Kingdon, 24-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝐵 ∈ ω)
⇒ ⊢ (𝜑 → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) |
|
Theorem | frecuzrdgrcl 10481* |
The function 𝑅 (used in the definition of the
recursive definition
generator on upper integers) is a function defined for all natural
numbers. (Contributed by Jim Kingdon, 1-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
|
Theorem | frecuzrdglem 10482* |
A helper lemma for the value of a recursive definition generator on
upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐶))
⇒ ⊢ (𝜑 → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
|
Theorem | frecuzrdgtcl 10483* |
The recursive definition generator on upper integers is a function.
See comment in frec2uz0d 10470 for the description of 𝐺 as the
mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim
Kingdon, 26-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) |
|
Theorem | frecuzrdg0 10484* |
Initial value of a recursive definition generator on upper integers.
See comment in frec2uz0d 10470 for the description of 𝐺 as the
mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim
Kingdon, 27-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) |
|
Theorem | frecuzrdgsuc 10485* |
Successor value of a recursive definition generator on upper
integers. See comment in frec2uz0d 10470 for the description of 𝐺
as the mapping from ω to (ℤ≥‘𝐶). (Contributed
by Jim Kingdon, 28-May-2020.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇‘𝐵))) |
|
Theorem | frecuzrdgrclt 10486* |
The function 𝑅 (used in the definition of the
recursive definition
generator on upper integers) yields ordered pairs of integers and
elements of 𝑆. Similar to frecuzrdgrcl 10481 except that 𝑆 and
𝑇 need not be the same. (Contributed
by Jim Kingdon,
22-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
|
Theorem | frecuzrdgg 10487* |
Lemma for other theorems involving the the recursive definition
generator on upper integers. Evaluating 𝑅 at a natural number
gives an ordered pair whose first element is the mapping of that
natural number via 𝐺. (Contributed by Jim Kingdon,
23-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → (1st ‘(𝑅‘𝑁)) = (𝐺‘𝑁)) |
|
Theorem | frecuzrdgdomlem 10488* |
The domain of the result of the recursive definition generator on
upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
|
Theorem | frecuzrdgdom 10489* |
The domain of the result of the recursive definition generator on
upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
|
Theorem | frecuzrdgfunlem 10490* |
The recursive definition generator on upper integers produces a a
function. (Contributed by Jim Kingdon, 24-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → Fun ran 𝑅) |
|
Theorem | frecuzrdgfun 10491* |
The recursive definition generator on upper integers produces a a
function. (Contributed by Jim Kingdon, 24-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → Fun ran 𝑅) |
|
Theorem | frecuzrdgtclt 10492* |
The recursive definition generator on upper integers is a function.
(Contributed by Jim Kingdon, 22-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) |
|
Theorem | frecuzrdg0t 10493* |
Initial value of a recursive definition generator on upper integers.
(Contributed by Jim Kingdon, 28-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) |
|
Theorem | frecuzrdgsuctlem 10494* |
Successor value of a recursive definition generator on upper integers.
See comment in frec2uz0d 10470 for the description of 𝐺 as the
mapping
from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon,
29-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) |
|
Theorem | frecuzrdgsuct 10495* |
Successor value of a recursive definition generator on upper integers.
(Contributed by Jim Kingdon, 29-Apr-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝑆 ⊆ 𝑇)
& ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) |
|
Theorem | uzenom 10496 |
An upper integer set is denumerable. (Contributed by Mario Carneiro,
15-Oct-2015.)
|
⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) |
|
Theorem | frecfzennn 10497 |
The cardinality of a finite set of sequential integers. (See
frec2uz0d 10470 for a description of the hypothesis.)
(Contributed by Jim
Kingdon, 18-May-2020.)
|
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝑁 ∈ ℕ0 →
(1...𝑁) ≈ (◡𝐺‘𝑁)) |
|
Theorem | frecfzen2 10498 |
The cardinality of a finite set of sequential integers with arbitrary
endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
|
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
|
Theorem | frechashgf1o 10499 |
𝐺
maps ω one-to-one onto ℕ0. (Contributed by Jim
Kingdon, 19-May-2020.)
|
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ 𝐺:ω–1-1-onto→ℕ0 |
|
Theorem | frec2uzled 10500* |
The mapping 𝐺 (see frec2uz0d 10470) preserves order. (Contributed by
Jim Kingdon, 24-Feb-2022.)
|
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω)
⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) |