ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposeqd GIF version

Theorem tposeqd 6225
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypothesis
Ref Expression
tposeqd.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
tposeqd (𝜑 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeqd
StepHypRef Expression
1 tposeqd.1 . 2 (𝜑𝐹 = 𝐺)
2 tposeq 6224 . 2 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
31, 2syl 14 1 (𝜑 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  tpos ctpos 6221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-mpt 4050  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-res 4621  df-tpos 6222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator