| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprvalg | GIF version | ||
| Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprvalg | ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.3 | . 2 ⊢ 𝑂 = (oppr‘𝑅) | |
| 2 | df-oppr 13863 | . . 3 ⊢ oppr = (𝑥 ∈ V ↦ (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉)) | |
| 3 | id 19 | . . . 4 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
| 4 | fveq2 5578 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = (.r‘𝑅)) | |
| 5 | opprval.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2256 | . . . . . 6 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = · ) |
| 7 | 6 | tposeqd 6336 | . . . . 5 ⊢ (𝑥 = 𝑅 → tpos (.r‘𝑥) = tpos · ) |
| 8 | 7 | opeq2d 3826 | . . . 4 ⊢ (𝑥 = 𝑅 → 〈(.r‘ndx), tpos (.r‘𝑥)〉 = 〈(.r‘ndx), tpos · 〉) |
| 9 | 3, 8 | oveq12d 5964 | . . 3 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 10 | elex 2783 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 11 | mulrslid 12997 | . . . . . 6 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 12 | 11 | simpri 113 | . . . . 5 ⊢ (.r‘ndx) ∈ ℕ |
| 13 | 12 | a1i 9 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘ndx) ∈ ℕ) |
| 14 | 11 | slotex 12892 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 15 | 5, 14 | eqeltrid 2292 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
| 16 | tposexg 6346 | . . . . 5 ⊢ ( · ∈ V → tpos · ∈ V) | |
| 17 | 15, 16 | syl 14 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → tpos · ∈ V) |
| 18 | setsex 12897 | . . . 4 ⊢ ((𝑅 ∈ V ∧ (.r‘ndx) ∈ ℕ ∧ tpos · ∈ V) → (𝑅 sSet 〈(.r‘ndx), tpos · 〉) ∈ V) | |
| 19 | 10, 13, 17, 18 | syl3anc 1250 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 sSet 〈(.r‘ndx), tpos · 〉) ∈ V) |
| 20 | 2, 9, 10, 19 | fvmptd3 5675 | . 2 ⊢ (𝑅 ∈ 𝑉 → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 21 | 1, 20 | eqtrid 2250 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 〈cop 3636 ‘cfv 5272 (class class class)co 5946 tpos ctpos 6332 ℕcn 9038 ndxcnx 12862 sSet csts 12863 Slot cslot 12864 Basecbs 12865 .rcmulr 12943 opprcoppr 13862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-tpos 6333 df-inn 9039 df-2 9097 df-3 9098 df-ndx 12868 df-slot 12869 df-sets 12872 df-mulr 12956 df-oppr 13863 |
| This theorem is referenced by: opprmulfvalg 13865 opprex 13868 opprsllem 13869 |
| Copyright terms: Public domain | W3C validator |