![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprvalg | GIF version |
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | β’ π΅ = (Baseβπ ) |
opprval.2 | β’ Β· = (.rβπ ) |
opprval.3 | β’ π = (opprβπ ) |
Ref | Expression |
---|---|
opprvalg | β’ (π β π β π = (π sSet β¨(.rβndx), tpos Β· β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.3 | . 2 β’ π = (opprβπ ) | |
2 | df-oppr 13246 | . . 3 β’ oppr = (π₯ β V β¦ (π₯ sSet β¨(.rβndx), tpos (.rβπ₯)β©)) | |
3 | id 19 | . . . 4 β’ (π₯ = π β π₯ = π ) | |
4 | fveq2 5517 | . . . . . . 7 β’ (π₯ = π β (.rβπ₯) = (.rβπ )) | |
5 | opprval.2 | . . . . . . 7 β’ Β· = (.rβπ ) | |
6 | 4, 5 | eqtr4di 2228 | . . . . . 6 β’ (π₯ = π β (.rβπ₯) = Β· ) |
7 | 6 | tposeqd 6252 | . . . . 5 β’ (π₯ = π β tpos (.rβπ₯) = tpos Β· ) |
8 | 7 | opeq2d 3787 | . . . 4 β’ (π₯ = π β β¨(.rβndx), tpos (.rβπ₯)β© = β¨(.rβndx), tpos Β· β©) |
9 | 3, 8 | oveq12d 5896 | . . 3 β’ (π₯ = π β (π₯ sSet β¨(.rβndx), tpos (.rβπ₯)β©) = (π sSet β¨(.rβndx), tpos Β· β©)) |
10 | elex 2750 | . . 3 β’ (π β π β π β V) | |
11 | mulrslid 12593 | . . . . . 6 β’ (.r = Slot (.rβndx) β§ (.rβndx) β β) | |
12 | 11 | simpri 113 | . . . . 5 β’ (.rβndx) β β |
13 | 12 | a1i 9 | . . . 4 β’ (π β π β (.rβndx) β β) |
14 | 11 | slotex 12492 | . . . . . 6 β’ (π β π β (.rβπ ) β V) |
15 | 5, 14 | eqeltrid 2264 | . . . . 5 β’ (π β π β Β· β V) |
16 | tposexg 6262 | . . . . 5 β’ ( Β· β V β tpos Β· β V) | |
17 | 15, 16 | syl 14 | . . . 4 β’ (π β π β tpos Β· β V) |
18 | setsex 12497 | . . . 4 β’ ((π β V β§ (.rβndx) β β β§ tpos Β· β V) β (π sSet β¨(.rβndx), tpos Β· β©) β V) | |
19 | 10, 13, 17, 18 | syl3anc 1238 | . . 3 β’ (π β π β (π sSet β¨(.rβndx), tpos Β· β©) β V) |
20 | 2, 9, 10, 19 | fvmptd3 5612 | . 2 β’ (π β π β (opprβπ ) = (π sSet β¨(.rβndx), tpos Β· β©)) |
21 | 1, 20 | eqtrid 2222 | 1 β’ (π β π β π = (π sSet β¨(.rβndx), tpos Β· β©)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2739 β¨cop 3597 βcfv 5218 (class class class)co 5878 tpos ctpos 6248 βcn 8922 ndxcnx 12462 sSet csts 12463 Slot cslot 12464 Basecbs 12465 .rcmulr 12540 opprcoppr 13245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-tpos 6249 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-sets 12472 df-mulr 12553 df-oppr 13246 |
This theorem is referenced by: opprmulfvalg 13248 opprex 13251 opprsllem 13252 |
Copyright terms: Public domain | W3C validator |