![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprvalg | GIF version |
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprvalg | ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.3 | . 2 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | df-oppr 13564 | . . 3 ⊢ oppr = (𝑥 ∈ V ↦ (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉)) | |
3 | id 19 | . . . 4 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
4 | fveq2 5554 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = (.r‘𝑅)) | |
5 | opprval.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
6 | 4, 5 | eqtr4di 2244 | . . . . . 6 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = · ) |
7 | 6 | tposeqd 6301 | . . . . 5 ⊢ (𝑥 = 𝑅 → tpos (.r‘𝑥) = tpos · ) |
8 | 7 | opeq2d 3811 | . . . 4 ⊢ (𝑥 = 𝑅 → 〈(.r‘ndx), tpos (.r‘𝑥)〉 = 〈(.r‘ndx), tpos · 〉) |
9 | 3, 8 | oveq12d 5936 | . . 3 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
10 | elex 2771 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
11 | mulrslid 12749 | . . . . . 6 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
12 | 11 | simpri 113 | . . . . 5 ⊢ (.r‘ndx) ∈ ℕ |
13 | 12 | a1i 9 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘ndx) ∈ ℕ) |
14 | 11 | slotex 12645 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
15 | 5, 14 | eqeltrid 2280 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
16 | tposexg 6311 | . . . . 5 ⊢ ( · ∈ V → tpos · ∈ V) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → tpos · ∈ V) |
18 | setsex 12650 | . . . 4 ⊢ ((𝑅 ∈ V ∧ (.r‘ndx) ∈ ℕ ∧ tpos · ∈ V) → (𝑅 sSet 〈(.r‘ndx), tpos · 〉) ∈ V) | |
19 | 10, 13, 17, 18 | syl3anc 1249 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 sSet 〈(.r‘ndx), tpos · 〉) ∈ V) |
20 | 2, 9, 10, 19 | fvmptd3 5651 | . 2 ⊢ (𝑅 ∈ 𝑉 → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
21 | 1, 20 | eqtrid 2238 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3621 ‘cfv 5254 (class class class)co 5918 tpos ctpos 6297 ℕcn 8982 ndxcnx 12615 sSet csts 12616 Slot cslot 12617 Basecbs 12618 .rcmulr 12696 opprcoppr 13563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-tpos 6298 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-sets 12625 df-mulr 12709 df-oppr 13564 |
This theorem is referenced by: opprmulfvalg 13566 opprex 13569 opprsllem 13570 |
Copyright terms: Public domain | W3C validator |