| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeq | GIF version | ||
| Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmeq | ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmss 4866 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | |
| 2 | dmss 4866 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) |
| 4 | eqss 3199 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3199 | . 2 ⊢ (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ⊆ wss 3157 dom cdm 4664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-dm 4674 |
| This theorem is referenced by: dmeqi 4868 dmeqd 4869 xpid11 4890 sqxpeq0 5094 fneq1 5347 eqfnfv2 5663 offval 6147 ofrfval 6148 offval3 6200 smoeq 6357 tfrlemi14d 6400 tfr1onlemres 6416 tfrcllemres 6429 rdgivallem 6448 rdgon 6453 rdg0 6454 frec0g 6464 freccllem 6469 frecfcllem 6471 frecsuclem 6473 frecsuc 6474 ereq1 6608 fundmeng 6875 acfun 7290 ccfunen 7347 ennnfonelemj0 12643 ennnfonelemg 12645 ennnfonelemp1 12648 ennnfonelemom 12650 ennnfonelemnn0 12664 ptex 12966 prdsex 12971 blfvalps 14705 reldvg 14999 |
| Copyright terms: Public domain | W3C validator |