![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmeq | GIF version |
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmeq | ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmss 4666 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | |
2 | dmss 4666 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴) | |
3 | 1, 2 | anim12i 332 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) |
4 | eqss 3054 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3054 | . 2 ⊢ (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 200 | 1 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ⊆ wss 3013 dom cdm 4467 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-dm 4477 |
This theorem is referenced by: dmeqi 4668 dmeqd 4669 xpid11 4690 sqxpeq0 4888 fneq1 5136 eqfnfv2 5437 offval 5901 ofrfval 5902 offval3 5943 smoeq 6093 tfrlemi14d 6136 tfr1onlemres 6152 tfrcllemres 6165 rdgivallem 6184 rdgon 6189 rdg0 6190 frec0g 6200 freccllem 6205 frecfcllem 6207 frecsuclem 6209 frecsuc 6210 ereq1 6339 fundmeng 6604 blfvalps 12171 |
Copyright terms: Public domain | W3C validator |