Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmeq | GIF version |
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmeq | ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmss 4819 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | |
2 | dmss 4819 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴) | |
3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) |
4 | eqss 3168 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3168 | . 2 ⊢ (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ⊆ wss 3127 dom cdm 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-dm 4630 |
This theorem is referenced by: dmeqi 4821 dmeqd 4822 xpid11 4843 sqxpeq0 5044 fneq1 5296 eqfnfv2 5606 offval 6080 ofrfval 6081 offval3 6125 smoeq 6281 tfrlemi14d 6324 tfr1onlemres 6340 tfrcllemres 6353 rdgivallem 6372 rdgon 6377 rdg0 6378 frec0g 6388 freccllem 6393 frecfcllem 6395 frecsuclem 6397 frecsuc 6398 ereq1 6532 fundmeng 6797 acfun 7196 ccfunen 7238 ennnfonelemj0 12367 ennnfonelemg 12369 ennnfonelemp1 12372 ennnfonelemom 12374 ennnfonelemnn0 12388 blfvalps 13436 reldvg 13699 |
Copyright terms: Public domain | W3C validator |