| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeq | GIF version | ||
| Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmeq | ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmss 4922 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | |
| 2 | dmss 4922 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) |
| 4 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3239 | . 2 ⊢ (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ⊆ wss 3197 dom cdm 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: dmeqi 4924 dmeqd 4925 xpid11 4947 sqxpeq0 5152 fneq1 5409 eqfnfv2 5735 funopdmsn 5823 offval 6232 ofrfval 6233 offval3 6285 smoeq 6442 tfrlemi14d 6485 tfr1onlemres 6501 tfrcllemres 6514 rdgivallem 6533 rdgon 6538 rdg0 6539 frec0g 6549 freccllem 6554 frecfcllem 6556 frecsuclem 6558 frecsuc 6559 ereq1 6695 fundmeng 6968 acfun 7397 ccfunen 7458 fundm2domnop0 11075 ennnfonelemj0 12980 ennnfonelemg 12982 ennnfonelemp1 12985 ennnfonelemom 12987 ennnfonelemnn0 13001 ptex 13305 prdsex 13310 blfvalps 15067 reldvg 15361 uhgr0e 15890 incistruhgr 15898 ausgrusgrien 15977 |
| Copyright terms: Public domain | W3C validator |