ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq GIF version

Theorem dmeq 4804
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4803 . . 3 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
2 dmss 4803 . . 3 (𝐵𝐴 → dom 𝐵 ⊆ dom 𝐴)
31, 2anim12i 336 . 2 ((𝐴𝐵𝐵𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴))
4 eqss 3157 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3157 . 2 (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴))
63, 4, 53imtr4i 200 1 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wss 3116  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-dm 4614
This theorem is referenced by:  dmeqi  4805  dmeqd  4806  xpid11  4827  sqxpeq0  5027  fneq1  5276  eqfnfv2  5584  offval  6057  ofrfval  6058  offval3  6102  smoeq  6258  tfrlemi14d  6301  tfr1onlemres  6317  tfrcllemres  6330  rdgivallem  6349  rdgon  6354  rdg0  6355  frec0g  6365  freccllem  6370  frecfcllem  6372  frecsuclem  6374  frecsuc  6375  ereq1  6508  fundmeng  6773  acfun  7163  ccfunen  7205  ennnfonelemj0  12334  ennnfonelemg  12336  ennnfonelemp1  12339  ennnfonelemom  12341  ennnfonelemnn0  12355  blfvalps  13025  reldvg  13288
  Copyright terms: Public domain W3C validator