![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmeq | GIF version |
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmeq | ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmss 4827 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | |
2 | dmss 4827 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴) | |
3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) |
4 | eqss 3171 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3171 | . 2 ⊢ (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ⊆ wss 3130 dom cdm 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-dm 4637 |
This theorem is referenced by: dmeqi 4829 dmeqd 4830 xpid11 4851 sqxpeq0 5053 fneq1 5305 eqfnfv2 5615 offval 6090 ofrfval 6091 offval3 6135 smoeq 6291 tfrlemi14d 6334 tfr1onlemres 6350 tfrcllemres 6363 rdgivallem 6382 rdgon 6387 rdg0 6388 frec0g 6398 freccllem 6403 frecfcllem 6405 frecsuclem 6407 frecsuc 6408 ereq1 6542 fundmeng 6807 acfun 7206 ccfunen 7263 ennnfonelemj0 12402 ennnfonelemg 12404 ennnfonelemp1 12407 ennnfonelemom 12409 ennnfonelemnn0 12423 ptex 12713 prdsex 12718 blfvalps 13888 reldvg 14151 |
Copyright terms: Public domain | W3C validator |