ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq GIF version

Theorem dmeq 4667
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4666 . . 3 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
2 dmss 4666 . . 3 (𝐵𝐴 → dom 𝐵 ⊆ dom 𝐴)
31, 2anim12i 332 . 2 ((𝐴𝐵𝐵𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴))
4 eqss 3054 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3054 . 2 (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴))
63, 4, 53imtr4i 200 1 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wss 3013  dom cdm 4467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-dm 4477
This theorem is referenced by:  dmeqi  4668  dmeqd  4669  xpid11  4690  sqxpeq0  4888  fneq1  5136  eqfnfv2  5437  offval  5901  ofrfval  5902  offval3  5943  smoeq  6093  tfrlemi14d  6136  tfr1onlemres  6152  tfrcllemres  6165  rdgivallem  6184  rdgon  6189  rdg0  6190  frec0g  6200  freccllem  6205  frecfcllem  6207  frecsuclem  6209  frecsuc  6210  ereq1  6339  fundmeng  6604  blfvalps  12171
  Copyright terms: Public domain W3C validator