| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeq | GIF version | ||
| Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmeq | ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmss 4919 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | |
| 2 | dmss 4919 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → dom 𝐵 ⊆ dom 𝐴) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) |
| 4 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3239 | . 2 ⊢ (dom 𝐴 = dom 𝐵 ↔ (dom 𝐴 ⊆ dom 𝐵 ∧ dom 𝐵 ⊆ dom 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ⊆ wss 3197 dom cdm 4716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-dm 4726 |
| This theorem is referenced by: dmeqi 4921 dmeqd 4922 xpid11 4943 sqxpeq0 5148 fneq1 5405 eqfnfv2 5726 funopdmsn 5812 offval 6216 ofrfval 6217 offval3 6269 smoeq 6426 tfrlemi14d 6469 tfr1onlemres 6485 tfrcllemres 6498 rdgivallem 6517 rdgon 6522 rdg0 6523 frec0g 6533 freccllem 6538 frecfcllem 6540 frecsuclem 6542 frecsuc 6543 ereq1 6677 fundmeng 6950 acfun 7377 ccfunen 7438 fundm2domnop0 11054 ennnfonelemj0 12958 ennnfonelemg 12960 ennnfonelemp1 12963 ennnfonelemom 12965 ennnfonelemnn0 12979 ptex 13283 prdsex 13288 blfvalps 15044 reldvg 15338 uhgr0e 15867 incistruhgr 15875 ausgrusgrien 15954 |
| Copyright terms: Public domain | W3C validator |