| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwmndid | Structured version Visualization version GIF version | ||
| Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.) |
| Ref | Expression |
|---|---|
| pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
| pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
| Ref | Expression |
|---|---|
| pwmndid | ⊢ (0g‘𝑀) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5294 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 2 | pwmnd.b | . . . . 5 ⊢ (Base‘𝑀) = 𝒫 𝐴 | |
| 3 | 2 | eqcomi 2740 | . . . 4 ⊢ 𝒫 𝐴 = (Base‘𝑀) |
| 4 | eqid 2731 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 5 | eqid 2731 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 6 | id 22 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴) | |
| 7 | pwmnd.p | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
| 8 | 2, 7 | pwmndgplus 18840 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = (∅ ∪ 𝑧)) |
| 9 | 0un 4346 | . . . . 5 ⊢ (∅ ∪ 𝑧) = 𝑧 | |
| 10 | 8, 9 | eqtrdi 2782 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = 𝑧) |
| 11 | 2, 7 | pwmndgplus 18840 | . . . . . 6 ⊢ ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
| 13 | un0 4344 | . . . . 5 ⊢ (𝑧 ∪ ∅) = 𝑧 | |
| 14 | 12, 13 | eqtrdi 2782 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = 𝑧) |
| 15 | 3, 4, 5, 6, 10, 14 | ismgmid2 18573 | . . 3 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ = (0g‘𝑀)) |
| 16 | 15 | eqcomd 2737 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 → (0g‘𝑀) = ∅) |
| 17 | 1, 16 | ax-mp 5 | 1 ⊢ (0g‘𝑀) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ∅c0 4283 𝒫 cpw 4550 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 +gcplusg 17158 0gc0g 17340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-0g 17342 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |