| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwmndid | Structured version Visualization version GIF version | ||
| Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.) |
| Ref | Expression |
|---|---|
| pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
| pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
| Ref | Expression |
|---|---|
| pwmndid | ⊢ (0g‘𝑀) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5296 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 2 | pwmnd.b | . . . . 5 ⊢ (Base‘𝑀) = 𝒫 𝐴 | |
| 3 | 2 | eqcomi 2742 | . . . 4 ⊢ 𝒫 𝐴 = (Base‘𝑀) |
| 4 | eqid 2733 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 5 | eqid 2733 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 6 | id 22 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴) | |
| 7 | pwmnd.p | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
| 8 | 2, 7 | pwmndgplus 18845 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = (∅ ∪ 𝑧)) |
| 9 | 0un 4345 | . . . . 5 ⊢ (∅ ∪ 𝑧) = 𝑧 | |
| 10 | 8, 9 | eqtrdi 2784 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = 𝑧) |
| 11 | 2, 7 | pwmndgplus 18845 | . . . . . 6 ⊢ ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
| 13 | un0 4343 | . . . . 5 ⊢ (𝑧 ∪ ∅) = 𝑧 | |
| 14 | 12, 13 | eqtrdi 2784 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = 𝑧) |
| 15 | 3, 4, 5, 6, 10, 14 | ismgmid2 18578 | . . 3 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ = (0g‘𝑀)) |
| 16 | 15 | eqcomd 2739 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 → (0g‘𝑀) = ∅) |
| 17 | 1, 16 | ax-mp 5 | 1 ⊢ (0g‘𝑀) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ∅c0 4282 𝒫 cpw 4549 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 Basecbs 17122 +gcplusg 17163 0gc0g 17345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-0g 17347 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |