Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwmndid | Structured version Visualization version GIF version |
Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.) |
Ref | Expression |
---|---|
pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
Ref | Expression |
---|---|
pwmndid | ⊢ (0g‘𝑀) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5278 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
2 | pwmnd.b | . . . . 5 ⊢ (Base‘𝑀) = 𝒫 𝐴 | |
3 | 2 | eqcomi 2747 | . . . 4 ⊢ 𝒫 𝐴 = (Base‘𝑀) |
4 | eqid 2738 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
5 | eqid 2738 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
6 | id 22 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴) | |
7 | pwmnd.p | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
8 | 2, 7 | pwmndgplus 18574 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = (∅ ∪ 𝑧)) |
9 | 0un 4326 | . . . . 5 ⊢ (∅ ∪ 𝑧) = 𝑧 | |
10 | 8, 9 | eqtrdi 2794 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = 𝑧) |
11 | 2, 7 | pwmndgplus 18574 | . . . . . 6 ⊢ ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
12 | 11 | ancoms 459 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
13 | un0 4324 | . . . . 5 ⊢ (𝑧 ∪ ∅) = 𝑧 | |
14 | 12, 13 | eqtrdi 2794 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = 𝑧) |
15 | 3, 4, 5, 6, 10, 14 | ismgmid2 18352 | . . 3 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ = (0g‘𝑀)) |
16 | 15 | eqcomd 2744 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 → (0g‘𝑀) = ∅) |
17 | 1, 16 | ax-mp 5 | 1 ⊢ (0g‘𝑀) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∅c0 4256 𝒫 cpw 4533 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 +gcplusg 16962 0gc0g 17150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-0g 17152 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |