![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwmndid | Structured version Visualization version GIF version |
Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.) |
Ref | Expression |
---|---|
pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
Ref | Expression |
---|---|
pwmndid | ⊢ (0g‘𝑀) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 5354 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
2 | pwmnd.b | . . . . 5 ⊢ (Base‘𝑀) = 𝒫 𝐴 | |
3 | 2 | eqcomi 2741 | . . . 4 ⊢ 𝒫 𝐴 = (Base‘𝑀) |
4 | eqid 2732 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
5 | eqid 2732 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
6 | id 22 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴) | |
7 | pwmnd.p | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
8 | 2, 7 | pwmndgplus 18815 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = (∅ ∪ 𝑧)) |
9 | 0un 4392 | . . . . 5 ⊢ (∅ ∪ 𝑧) = 𝑧 | |
10 | 8, 9 | eqtrdi 2788 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = 𝑧) |
11 | 2, 7 | pwmndgplus 18815 | . . . . . 6 ⊢ ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
12 | 11 | ancoms 459 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
13 | un0 4390 | . . . . 5 ⊢ (𝑧 ∪ ∅) = 𝑧 | |
14 | 12, 13 | eqtrdi 2788 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = 𝑧) |
15 | 3, 4, 5, 6, 10, 14 | ismgmid2 18586 | . . 3 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ = (0g‘𝑀)) |
16 | 15 | eqcomd 2738 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 → (0g‘𝑀) = ∅) |
17 | 1, 16 | ax-mp 5 | 1 ⊢ (0g‘𝑀) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∪ cun 3946 ∅c0 4322 𝒫 cpw 4602 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 Basecbs 17143 +gcplusg 17196 0gc0g 17384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-0g 17386 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |