MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwmndid Structured version   Visualization version   GIF version

Theorem pwmndid 18962
Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.)
Hypotheses
Ref Expression
pwmnd.b (Base‘𝑀) = 𝒫 𝐴
pwmnd.p (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
Assertion
Ref Expression
pwmndid (0g𝑀) = ∅
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem pwmndid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0elpw 5362 . 2 ∅ ∈ 𝒫 𝐴
2 pwmnd.b . . . . 5 (Base‘𝑀) = 𝒫 𝐴
32eqcomi 2744 . . . 4 𝒫 𝐴 = (Base‘𝑀)
4 eqid 2735 . . . 4 (0g𝑀) = (0g𝑀)
5 eqid 2735 . . . 4 (+g𝑀) = (+g𝑀)
6 id 22 . . . 4 (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴)
7 pwmnd.p . . . . . 6 (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
82, 7pwmndgplus 18961 . . . . 5 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑧) = (∅ ∪ 𝑧))
9 0un 4402 . . . . 5 (∅ ∪ 𝑧) = 𝑧
108, 9eqtrdi 2791 . . . 4 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑧) = 𝑧)
112, 7pwmndgplus 18961 . . . . . 6 ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = (𝑧 ∪ ∅))
1211ancoms 458 . . . . 5 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = (𝑧 ∪ ∅))
13 un0 4400 . . . . 5 (𝑧 ∪ ∅) = 𝑧
1412, 13eqtrdi 2791 . . . 4 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = 𝑧)
153, 4, 5, 6, 10, 14ismgmid2 18694 . . 3 (∅ ∈ 𝒫 𝐴 → ∅ = (0g𝑀))
1615eqcomd 2741 . 2 (∅ ∈ 𝒫 𝐴 → (0g𝑀) = ∅)
171, 16ax-mp 5 1 (0g𝑀) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  cun 3961  c0 4339  𝒫 cpw 4605  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  +gcplusg 17298  0gc0g 17486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-0g 17488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator