| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwmndid | Structured version Visualization version GIF version | ||
| Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.) |
| Ref | Expression |
|---|---|
| pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
| pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
| Ref | Expression |
|---|---|
| pwmndid | ⊢ (0g‘𝑀) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5314 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 2 | pwmnd.b | . . . . 5 ⊢ (Base‘𝑀) = 𝒫 𝐴 | |
| 3 | 2 | eqcomi 2739 | . . . 4 ⊢ 𝒫 𝐴 = (Base‘𝑀) |
| 4 | eqid 2730 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 5 | eqid 2730 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 6 | id 22 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴) | |
| 7 | pwmnd.p | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
| 8 | 2, 7 | pwmndgplus 18869 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = (∅ ∪ 𝑧)) |
| 9 | 0un 4362 | . . . . 5 ⊢ (∅ ∪ 𝑧) = 𝑧 | |
| 10 | 8, 9 | eqtrdi 2781 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = 𝑧) |
| 11 | 2, 7 | pwmndgplus 18869 | . . . . . 6 ⊢ ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
| 13 | un0 4360 | . . . . 5 ⊢ (𝑧 ∪ ∅) = 𝑧 | |
| 14 | 12, 13 | eqtrdi 2781 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = 𝑧) |
| 15 | 3, 4, 5, 6, 10, 14 | ismgmid2 18602 | . . 3 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ = (0g‘𝑀)) |
| 16 | 15 | eqcomd 2736 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 → (0g‘𝑀) = ∅) |
| 17 | 1, 16 | ax-mp 5 | 1 ⊢ (0g‘𝑀) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∅c0 4299 𝒫 cpw 4566 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Basecbs 17186 +gcplusg 17227 0gc0g 17409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-0g 17411 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |