MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwmndid Structured version   Visualization version   GIF version

Theorem pwmndid 18858
Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.)
Hypotheses
Ref Expression
pwmnd.b (Base‘𝑀) = 𝒫 𝐴
pwmnd.p (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
Assertion
Ref Expression
pwmndid (0g𝑀) = ∅
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem pwmndid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0elpw 5347 . 2 ∅ ∈ 𝒫 𝐴
2 pwmnd.b . . . . 5 (Base‘𝑀) = 𝒫 𝐴
32eqcomi 2735 . . . 4 𝒫 𝐴 = (Base‘𝑀)
4 eqid 2726 . . . 4 (0g𝑀) = (0g𝑀)
5 eqid 2726 . . . 4 (+g𝑀) = (+g𝑀)
6 id 22 . . . 4 (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴)
7 pwmnd.p . . . . . 6 (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
82, 7pwmndgplus 18857 . . . . 5 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑧) = (∅ ∪ 𝑧))
9 0un 4387 . . . . 5 (∅ ∪ 𝑧) = 𝑧
108, 9eqtrdi 2782 . . . 4 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑧) = 𝑧)
112, 7pwmndgplus 18857 . . . . . 6 ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = (𝑧 ∪ ∅))
1211ancoms 458 . . . . 5 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = (𝑧 ∪ ∅))
13 un0 4385 . . . . 5 (𝑧 ∪ ∅) = 𝑧
1412, 13eqtrdi 2782 . . . 4 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = 𝑧)
153, 4, 5, 6, 10, 14ismgmid2 18598 . . 3 (∅ ∈ 𝒫 𝐴 → ∅ = (0g𝑀))
1615eqcomd 2732 . 2 (∅ ∈ 𝒫 𝐴 → (0g𝑀) = ∅)
171, 16ax-mp 5 1 (0g𝑀) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  cun 3941  c0 4317  𝒫 cpw 4597  cfv 6536  (class class class)co 7404  cmpo 7406  Basecbs 17150  +gcplusg 17203  0gc0g 17391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-0g 17393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator