MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwmndid Structured version   Visualization version   GIF version

Theorem pwmndid 18841
Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.)
Hypotheses
Ref Expression
pwmnd.b (Base‘𝑀) = 𝒫 𝐴
pwmnd.p (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
Assertion
Ref Expression
pwmndid (0g𝑀) = ∅
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem pwmndid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0elpw 5294 . 2 ∅ ∈ 𝒫 𝐴
2 pwmnd.b . . . . 5 (Base‘𝑀) = 𝒫 𝐴
32eqcomi 2740 . . . 4 𝒫 𝐴 = (Base‘𝑀)
4 eqid 2731 . . . 4 (0g𝑀) = (0g𝑀)
5 eqid 2731 . . . 4 (+g𝑀) = (+g𝑀)
6 id 22 . . . 4 (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴)
7 pwmnd.p . . . . . 6 (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
82, 7pwmndgplus 18840 . . . . 5 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑧) = (∅ ∪ 𝑧))
9 0un 4346 . . . . 5 (∅ ∪ 𝑧) = 𝑧
108, 9eqtrdi 2782 . . . 4 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑧) = 𝑧)
112, 7pwmndgplus 18840 . . . . . 6 ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = (𝑧 ∪ ∅))
1211ancoms 458 . . . . 5 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = (𝑧 ∪ ∅))
13 un0 4344 . . . . 5 (𝑧 ∪ ∅) = 𝑧
1412, 13eqtrdi 2782 . . . 4 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = 𝑧)
153, 4, 5, 6, 10, 14ismgmid2 18573 . . 3 (∅ ∈ 𝒫 𝐴 → ∅ = (0g𝑀))
1615eqcomd 2737 . 2 (∅ ∈ 𝒫 𝐴 → (0g𝑀) = ∅)
171, 16ax-mp 5 1 (0g𝑀) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  cun 3900  c0 4283  𝒫 cpw 4550  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  +gcplusg 17158  0gc0g 17340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-0g 17342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator