MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwmndid Structured version   Visualization version   GIF version

Theorem pwmndid 18101
Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.)
Hypotheses
Ref Expression
pwmnd.b (Base‘𝑀) = 𝒫 𝐴
pwmnd.p (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
Assertion
Ref Expression
pwmndid (0g𝑀) = ∅
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem pwmndid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0elpw 5256 . 2 ∅ ∈ 𝒫 𝐴
2 pwmnd.b . . . . 5 (Base‘𝑀) = 𝒫 𝐴
32eqcomi 2830 . . . 4 𝒫 𝐴 = (Base‘𝑀)
4 eqid 2821 . . . 4 (0g𝑀) = (0g𝑀)
5 eqid 2821 . . . 4 (+g𝑀) = (+g𝑀)
6 id 22 . . . 4 (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴)
7 pwmnd.p . . . . . 6 (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
82, 7pwmndgplus 18100 . . . . 5 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑧) = (∅ ∪ 𝑧))
9 0un 4346 . . . . 5 (∅ ∪ 𝑧) = 𝑧
108, 9syl6eq 2872 . . . 4 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑧) = 𝑧)
112, 7pwmndgplus 18100 . . . . . 6 ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = (𝑧 ∪ ∅))
1211ancoms 461 . . . . 5 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = (𝑧 ∪ ∅))
13 un0 4344 . . . . 5 (𝑧 ∪ ∅) = 𝑧
1412, 13syl6eq 2872 . . . 4 ((∅ ∈ 𝒫 𝐴𝑧 ∈ 𝒫 𝐴) → (𝑧(+g𝑀)∅) = 𝑧)
153, 4, 5, 6, 10, 14ismgmid2 17878 . . 3 (∅ ∈ 𝒫 𝐴 → ∅ = (0g𝑀))
1615eqcomd 2827 . 2 (∅ ∈ 𝒫 𝐴 → (0g𝑀) = ∅)
171, 16ax-mp 5 1 (0g𝑀) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  cun 3934  c0 4291  𝒫 cpw 4539  cfv 6355  (class class class)co 7156  cmpo 7158  Basecbs 16483  +gcplusg 16565  0gc0g 16713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-0g 16715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator