| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwmndid | Structured version Visualization version GIF version | ||
| Description: The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.) |
| Ref | Expression |
|---|---|
| pwmnd.b | ⊢ (Base‘𝑀) = 𝒫 𝐴 |
| pwmnd.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) |
| Ref | Expression |
|---|---|
| pwmndid | ⊢ (0g‘𝑀) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 5326 | . 2 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 2 | pwmnd.b | . . . . 5 ⊢ (Base‘𝑀) = 𝒫 𝐴 | |
| 3 | 2 | eqcomi 2744 | . . . 4 ⊢ 𝒫 𝐴 = (Base‘𝑀) |
| 4 | eqid 2735 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 5 | eqid 2735 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 6 | id 22 | . . . 4 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴) | |
| 7 | pwmnd.p | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) | |
| 8 | 2, 7 | pwmndgplus 18913 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = (∅ ∪ 𝑧)) |
| 9 | 0un 4371 | . . . . 5 ⊢ (∅ ∪ 𝑧) = 𝑧 | |
| 10 | 8, 9 | eqtrdi 2786 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (∅(+g‘𝑀)𝑧) = 𝑧) |
| 11 | 2, 7 | pwmndgplus 18913 | . . . . . 6 ⊢ ((𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = (𝑧 ∪ ∅)) |
| 13 | un0 4369 | . . . . 5 ⊢ (𝑧 ∪ ∅) = 𝑧 | |
| 14 | 12, 13 | eqtrdi 2786 | . . . 4 ⊢ ((∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧(+g‘𝑀)∅) = 𝑧) |
| 15 | 3, 4, 5, 6, 10, 14 | ismgmid2 18646 | . . 3 ⊢ (∅ ∈ 𝒫 𝐴 → ∅ = (0g‘𝑀)) |
| 16 | 15 | eqcomd 2741 | . 2 ⊢ (∅ ∈ 𝒫 𝐴 → (0g‘𝑀) = ∅) |
| 17 | 1, 16 | ax-mp 5 | 1 ⊢ (0g‘𝑀) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∅c0 4308 𝒫 cpw 4575 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Basecbs 17228 +gcplusg 17271 0gc0g 17453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-0g 17455 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |