Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt17 Structured version   Visualization version   GIF version

Theorem metakunt17 40639
Description: The union of three disjoint bijections is a bijection. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt17.1 (𝜑𝐺:𝐴1-1-onto𝑋)
metakunt17.2 (𝜑𝐻:𝐵1-1-onto𝑌)
metakunt17.3 (𝜑𝐼:𝐶1-1-onto𝑍)
metakunt17.4 (𝜑 → (𝐴𝐵) = ∅)
metakunt17.5 (𝜑 → (𝐴𝐶) = ∅)
metakunt17.6 (𝜑 → (𝐵𝐶) = ∅)
metakunt17.7 (𝜑 → (𝑋𝑌) = ∅)
metakunt17.8 (𝜑 → (𝑋𝑍) = ∅)
metakunt17.9 (𝜑 → (𝑌𝑍) = ∅)
metakunt17.10 (𝜑𝐹 = ((𝐺𝐻) ∪ 𝐼))
metakunt17.11 (𝜑𝐷 = ((𝐴𝐵) ∪ 𝐶))
metakunt17.12 (𝜑𝑊 = ((𝑋𝑌) ∪ 𝑍))
Assertion
Ref Expression
metakunt17 (𝜑𝐹:𝐷1-1-onto𝑊)

Proof of Theorem metakunt17
StepHypRef Expression
1 metakunt17.1 . . . . . 6 (𝜑𝐺:𝐴1-1-onto𝑋)
2 metakunt17.2 . . . . . 6 (𝜑𝐻:𝐵1-1-onto𝑌)
3 metakunt17.4 . . . . . . 7 (𝜑 → (𝐴𝐵) = ∅)
4 metakunt17.7 . . . . . . 7 (𝜑 → (𝑋𝑌) = ∅)
53, 4jca 513 . . . . . 6 (𝜑 → ((𝐴𝐵) = ∅ ∧ (𝑋𝑌) = ∅))
61, 2, 5jca31 516 . . . . 5 (𝜑 → ((𝐺:𝐴1-1-onto𝑋𝐻:𝐵1-1-onto𝑌) ∧ ((𝐴𝐵) = ∅ ∧ (𝑋𝑌) = ∅)))
7 f1oun 6804 . . . . 5 (((𝐺:𝐴1-1-onto𝑋𝐻:𝐵1-1-onto𝑌) ∧ ((𝐴𝐵) = ∅ ∧ (𝑋𝑌) = ∅)) → (𝐺𝐻):(𝐴𝐵)–1-1-onto→(𝑋𝑌))
86, 7syl 17 . . . 4 (𝜑 → (𝐺𝐻):(𝐴𝐵)–1-1-onto→(𝑋𝑌))
9 metakunt17.3 . . . 4 (𝜑𝐼:𝐶1-1-onto𝑍)
10 indir 4236 . . . . . 6 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
11 metakunt17.5 . . . . . . . 8 (𝜑 → (𝐴𝐶) = ∅)
12 metakunt17.6 . . . . . . . 8 (𝜑 → (𝐵𝐶) = ∅)
1311, 12uneq12d 4125 . . . . . . 7 (𝜑 → ((𝐴𝐶) ∪ (𝐵𝐶)) = (∅ ∪ ∅))
14 0un 4353 . . . . . . . 8 (∅ ∪ ∅) = ∅
1514a1i 11 . . . . . . 7 (𝜑 → (∅ ∪ ∅) = ∅)
1613, 15eqtrd 2773 . . . . . 6 (𝜑 → ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
1710, 16eqtrid 2785 . . . . 5 (𝜑 → ((𝐴𝐵) ∩ 𝐶) = ∅)
18 indir 4236 . . . . . 6 ((𝑋𝑌) ∩ 𝑍) = ((𝑋𝑍) ∪ (𝑌𝑍))
19 metakunt17.8 . . . . . . . 8 (𝜑 → (𝑋𝑍) = ∅)
20 metakunt17.9 . . . . . . . 8 (𝜑 → (𝑌𝑍) = ∅)
2119, 20uneq12d 4125 . . . . . . 7 (𝜑 → ((𝑋𝑍) ∪ (𝑌𝑍)) = (∅ ∪ ∅))
2221, 15eqtrd 2773 . . . . . 6 (𝜑 → ((𝑋𝑍) ∪ (𝑌𝑍)) = ∅)
2318, 22eqtrid 2785 . . . . 5 (𝜑 → ((𝑋𝑌) ∩ 𝑍) = ∅)
2417, 23jca 513 . . . 4 (𝜑 → (((𝐴𝐵) ∩ 𝐶) = ∅ ∧ ((𝑋𝑌) ∩ 𝑍) = ∅))
258, 9, 24jca31 516 . . 3 (𝜑 → (((𝐺𝐻):(𝐴𝐵)–1-1-onto→(𝑋𝑌) ∧ 𝐼:𝐶1-1-onto𝑍) ∧ (((𝐴𝐵) ∩ 𝐶) = ∅ ∧ ((𝑋𝑌) ∩ 𝑍) = ∅)))
26 f1oun 6804 . . 3 ((((𝐺𝐻):(𝐴𝐵)–1-1-onto→(𝑋𝑌) ∧ 𝐼:𝐶1-1-onto𝑍) ∧ (((𝐴𝐵) ∩ 𝐶) = ∅ ∧ ((𝑋𝑌) ∩ 𝑍) = ∅)) → ((𝐺𝐻) ∪ 𝐼):((𝐴𝐵) ∪ 𝐶)–1-1-onto→((𝑋𝑌) ∪ 𝑍))
2725, 26syl 17 . 2 (𝜑 → ((𝐺𝐻) ∪ 𝐼):((𝐴𝐵) ∪ 𝐶)–1-1-onto→((𝑋𝑌) ∪ 𝑍))
28 metakunt17.10 . . 3 (𝜑𝐹 = ((𝐺𝐻) ∪ 𝐼))
29 metakunt17.11 . . 3 (𝜑𝐷 = ((𝐴𝐵) ∪ 𝐶))
30 metakunt17.12 . . 3 (𝜑𝑊 = ((𝑋𝑌) ∪ 𝑍))
3128, 29, 30f1oeq123d 6779 . 2 (𝜑 → (𝐹:𝐷1-1-onto𝑊 ↔ ((𝐺𝐻) ∪ 𝐼):((𝐴𝐵) ∪ 𝐶)–1-1-onto→((𝑋𝑌) ∪ 𝑍)))
3227, 31mpbird 257 1 (𝜑𝐹:𝐷1-1-onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  cun 3909  cin 3910  c0 4283  1-1-ontowf1o 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504
This theorem is referenced by:  metakunt25  40647
  Copyright terms: Public domain W3C validator