Proof of Theorem metakunt17
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | metakunt17.1 | . . . . . 6
⊢ (𝜑 → 𝐺:𝐴–1-1-onto→𝑋) | 
| 2 |  | metakunt17.2 | . . . . . 6
⊢ (𝜑 → 𝐻:𝐵–1-1-onto→𝑌) | 
| 3 |  | metakunt17.4 | . . . . . . 7
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | 
| 4 |  | metakunt17.7 | . . . . . . 7
⊢ (𝜑 → (𝑋 ∩ 𝑌) = ∅) | 
| 5 | 3, 4 | jca 511 | . . . . . 6
⊢ (𝜑 → ((𝐴 ∩ 𝐵) = ∅ ∧ (𝑋 ∩ 𝑌) = ∅)) | 
| 6 | 1, 2, 5 | jca31 514 | . . . . 5
⊢ (𝜑 → ((𝐺:𝐴–1-1-onto→𝑋 ∧ 𝐻:𝐵–1-1-onto→𝑌) ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ (𝑋 ∩ 𝑌) = ∅))) | 
| 7 |  | f1oun 6867 | . . . . 5
⊢ (((𝐺:𝐴–1-1-onto→𝑋 ∧ 𝐻:𝐵–1-1-onto→𝑌) ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ (𝑋 ∩ 𝑌) = ∅)) → (𝐺 ∪ 𝐻):(𝐴 ∪ 𝐵)–1-1-onto→(𝑋 ∪ 𝑌)) | 
| 8 | 6, 7 | syl 17 | . . . 4
⊢ (𝜑 → (𝐺 ∪ 𝐻):(𝐴 ∪ 𝐵)–1-1-onto→(𝑋 ∪ 𝑌)) | 
| 9 |  | metakunt17.3 | . . . 4
⊢ (𝜑 → 𝐼:𝐶–1-1-onto→𝑍) | 
| 10 |  | indir 4286 | . . . . . 6
⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | 
| 11 |  | metakunt17.5 | . . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) | 
| 12 |  | metakunt17.6 | . . . . . . . 8
⊢ (𝜑 → (𝐵 ∩ 𝐶) = ∅) | 
| 13 | 11, 12 | uneq12d 4169 | . . . . . . 7
⊢ (𝜑 → ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = (∅ ∪
∅)) | 
| 14 |  | 0un 4396 | . . . . . . . 8
⊢ (∅
∪ ∅) = ∅ | 
| 15 | 14 | a1i 11 | . . . . . . 7
⊢ (𝜑 → (∅ ∪ ∅) =
∅) | 
| 16 | 13, 15 | eqtrd 2777 | . . . . . 6
⊢ (𝜑 → ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) | 
| 17 | 10, 16 | eqtrid 2789 | . . . . 5
⊢ (𝜑 → ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) | 
| 18 |  | indir 4286 | . . . . . 6
⊢ ((𝑋 ∪ 𝑌) ∩ 𝑍) = ((𝑋 ∩ 𝑍) ∪ (𝑌 ∩ 𝑍)) | 
| 19 |  | metakunt17.8 | . . . . . . . 8
⊢ (𝜑 → (𝑋 ∩ 𝑍) = ∅) | 
| 20 |  | metakunt17.9 | . . . . . . . 8
⊢ (𝜑 → (𝑌 ∩ 𝑍) = ∅) | 
| 21 | 19, 20 | uneq12d 4169 | . . . . . . 7
⊢ (𝜑 → ((𝑋 ∩ 𝑍) ∪ (𝑌 ∩ 𝑍)) = (∅ ∪
∅)) | 
| 22 | 21, 15 | eqtrd 2777 | . . . . . 6
⊢ (𝜑 → ((𝑋 ∩ 𝑍) ∪ (𝑌 ∩ 𝑍)) = ∅) | 
| 23 | 18, 22 | eqtrid 2789 | . . . . 5
⊢ (𝜑 → ((𝑋 ∪ 𝑌) ∩ 𝑍) = ∅) | 
| 24 | 17, 23 | jca 511 | . . . 4
⊢ (𝜑 → (((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅ ∧ ((𝑋 ∪ 𝑌) ∩ 𝑍) = ∅)) | 
| 25 | 8, 9, 24 | jca31 514 | . . 3
⊢ (𝜑 → (((𝐺 ∪ 𝐻):(𝐴 ∪ 𝐵)–1-1-onto→(𝑋 ∪ 𝑌) ∧ 𝐼:𝐶–1-1-onto→𝑍) ∧ (((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅ ∧ ((𝑋 ∪ 𝑌) ∩ 𝑍) = ∅))) | 
| 26 |  | f1oun 6867 | . . 3
⊢ ((((𝐺 ∪ 𝐻):(𝐴 ∪ 𝐵)–1-1-onto→(𝑋 ∪ 𝑌) ∧ 𝐼:𝐶–1-1-onto→𝑍) ∧ (((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅ ∧ ((𝑋 ∪ 𝑌) ∩ 𝑍) = ∅)) → ((𝐺 ∪ 𝐻) ∪ 𝐼):((𝐴 ∪ 𝐵) ∪ 𝐶)–1-1-onto→((𝑋 ∪ 𝑌) ∪ 𝑍)) | 
| 27 | 25, 26 | syl 17 | . 2
⊢ (𝜑 → ((𝐺 ∪ 𝐻) ∪ 𝐼):((𝐴 ∪ 𝐵) ∪ 𝐶)–1-1-onto→((𝑋 ∪ 𝑌) ∪ 𝑍)) | 
| 28 |  | metakunt17.10 | . . 3
⊢ (𝜑 → 𝐹 = ((𝐺 ∪ 𝐻) ∪ 𝐼)) | 
| 29 |  | metakunt17.11 | . . 3
⊢ (𝜑 → 𝐷 = ((𝐴 ∪ 𝐵) ∪ 𝐶)) | 
| 30 |  | metakunt17.12 | . . 3
⊢ (𝜑 → 𝑊 = ((𝑋 ∪ 𝑌) ∪ 𝑍)) | 
| 31 | 28, 29, 30 | f1oeq123d 6842 | . 2
⊢ (𝜑 → (𝐹:𝐷–1-1-onto→𝑊 ↔ ((𝐺 ∪ 𝐻) ∪ 𝐼):((𝐴 ∪ 𝐵) ∪ 𝐶)–1-1-onto→((𝑋 ∪ 𝑌) ∪ 𝑍))) | 
| 32 | 27, 31 | mpbird 257 | 1
⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝑊) |