Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpolN Structured version   Visualization version   GIF version

Theorem islpolN 39493
Description: The predicate "is a polarity". (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolset.v 𝑉 = (Base‘𝑊)
lpolset.s 𝑆 = (LSubSp‘𝑊)
lpolset.z 0 = (0g𝑊)
lpolset.a 𝐴 = (LSAtoms‘𝑊)
lpolset.h 𝐻 = (LSHyp‘𝑊)
lpolset.p 𝑃 = (LPol‘𝑊)
Assertion
Ref Expression
islpolN (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑊   𝑥, ,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem islpolN
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 lpolset.v . . . 4 𝑉 = (Base‘𝑊)
2 lpolset.s . . . 4 𝑆 = (LSubSp‘𝑊)
3 lpolset.z . . . 4 0 = (0g𝑊)
4 lpolset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
5 lpolset.h . . . 4 𝐻 = (LSHyp‘𝑊)
6 lpolset.p . . . 4 𝑃 = (LPol‘𝑊)
71, 2, 3, 4, 5, 6lpolsetN 39492 . . 3 (𝑊𝑋𝑃 = {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
87eleq2d 2826 . 2 (𝑊𝑋 → ( 𝑃 ∈ {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))}))
9 fveq1 6770 . . . . . 6 (𝑜 = → (𝑜𝑉) = ( 𝑉))
109eqeq1d 2742 . . . . 5 (𝑜 = → ((𝑜𝑉) = { 0 } ↔ ( 𝑉) = { 0 }))
11 fveq1 6770 . . . . . . . 8 (𝑜 = → (𝑜𝑦) = ( 𝑦))
12 fveq1 6770 . . . . . . . 8 (𝑜 = → (𝑜𝑥) = ( 𝑥))
1311, 12sseq12d 3959 . . . . . . 7 (𝑜 = → ((𝑜𝑦) ⊆ (𝑜𝑥) ↔ ( 𝑦) ⊆ ( 𝑥)))
1413imbi2d 341 . . . . . 6 (𝑜 = → (((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ↔ ((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥))))
15142albidv 1930 . . . . 5 (𝑜 = → (∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ↔ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥))))
1612eleq1d 2825 . . . . . . 7 (𝑜 = → ((𝑜𝑥) ∈ 𝐻 ↔ ( 𝑥) ∈ 𝐻))
17 id 22 . . . . . . . . 9 (𝑜 = 𝑜 = )
1817, 12fveq12d 6778 . . . . . . . 8 (𝑜 = → (𝑜‘(𝑜𝑥)) = ( ‘( 𝑥)))
1918eqeq1d 2742 . . . . . . 7 (𝑜 = → ((𝑜‘(𝑜𝑥)) = 𝑥 ↔ ( ‘( 𝑥)) = 𝑥))
2016, 19anbi12d 631 . . . . . 6 (𝑜 = → (((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥) ↔ (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))
2120ralbidv 3123 . . . . 5 (𝑜 = → (∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥) ↔ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))
2210, 15, 213anbi123d 1435 . . . 4 (𝑜 = → (((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥)) ↔ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))))
2322elrab 3626 . . 3 ( ∈ {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))} ↔ ( ∈ (𝑆m 𝒫 𝑉) ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))))
242fvexi 6785 . . . . 5 𝑆 ∈ V
251fvexi 6785 . . . . . 6 𝑉 ∈ V
2625pwex 5307 . . . . 5 𝒫 𝑉 ∈ V
2724, 26elmap 8642 . . . 4 ( ∈ (𝑆m 𝒫 𝑉) ↔ :𝒫 𝑉𝑆)
2827anbi1i 624 . . 3 (( ∈ (𝑆m 𝒫 𝑉) ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))) ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))))
2923, 28bitri 274 . 2 ( ∈ {𝑜 ∈ (𝑆m 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))} ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))))
308, 29bitrdi 287 1 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1540   = wceq 1542  wcel 2110  wral 3066  {crab 3070  wss 3892  𝒫 cpw 4539  {csn 4567  wf 6428  cfv 6432  (class class class)co 7271  m cmap 8598  Basecbs 16910  0gc0g 17148  LSubSpclss 20191  LSAtomsclsa 36984  LSHypclsh 36985  LPolclpoN 39490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-map 8600  df-lpolN 39491
This theorem is referenced by:  islpoldN  39494  lpolfN  39495  lpolvN  39496  lpolconN  39497  lpolsatN  39498  lpolpolsatN  39499
  Copyright terms: Public domain W3C validator