| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > joindm2 | Structured version Visualization version GIF version | ||
| Description: The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| joindm2.b | ⊢ 𝐵 = (Base‘𝐾) |
| joindm2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| joindm2.u | ⊢ 𝑈 = (lub‘𝐾) |
| joindm2.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| joindm2 | ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindm2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | joindm2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | joindm2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 4 | 1, 2, 3 | joindmss 18280 | . . 3 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
| 5 | eqss 3950 | . . . 4 ⊢ (dom ∨ = (𝐵 × 𝐵) ↔ (dom ∨ ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ∨ )) | |
| 6 | 5 | baib 535 | . . 3 ⊢ (dom ∨ ⊆ (𝐵 × 𝐵) → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
| 8 | relxp 5634 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
| 9 | ssrel 5723 | . . 3 ⊢ (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) |
| 11 | opelxp 5652 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 13 | joindm2.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
| 14 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ V) |
| 16 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ V) |
| 18 | 13, 2, 3, 15, 17 | joindef 18277 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom 𝑈)) |
| 19 | 12, 18 | imbi12d 344 | . . . 4 ⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
| 20 | 19 | 2albidv 1924 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
| 21 | r2al 3168 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈)) | |
| 22 | 20, 21 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
| 23 | 7, 10, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 {cpr 4578 〈cop 4582 × cxp 5614 dom cdm 5616 Rel wrel 5621 ‘cfv 6481 Basecbs 17117 lubclub 18212 joincjn 18214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-oprab 7350 df-lub 18247 df-join 18249 |
| This theorem is referenced by: joindm3 48999 toslat 49012 |
| Copyright terms: Public domain | W3C validator |