Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > joindm2 | Structured version Visualization version GIF version |
Description: The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
joindm2.b | ⊢ 𝐵 = (Base‘𝐾) |
joindm2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joindm2.u | ⊢ 𝑈 = (lub‘𝐾) |
joindm2.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
joindm2 | ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joindm2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | joindm2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | joindm2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | 1, 2, 3 | joindmss 18097 | . . 3 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
5 | eqss 3936 | . . . 4 ⊢ (dom ∨ = (𝐵 × 𝐵) ↔ (dom ∨ ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ∨ )) | |
6 | 5 | baib 536 | . . 3 ⊢ (dom ∨ ⊆ (𝐵 × 𝐵) → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
8 | relxp 5607 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
9 | ssrel 5693 | . . 3 ⊢ (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) |
11 | opelxp 5625 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
13 | joindm2.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
14 | vex 3436 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ V) |
16 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ V) |
18 | 13, 2, 3, 15, 17 | joindef 18094 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom 𝑈)) |
19 | 12, 18 | imbi12d 345 | . . . 4 ⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
20 | 19 | 2albidv 1926 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
21 | r2al 3118 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈)) | |
22 | 20, 21 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
23 | 7, 10, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 {cpr 4563 〈cop 4567 × cxp 5587 dom cdm 5589 Rel wrel 5594 ‘cfv 6433 Basecbs 16912 lubclub 18027 joincjn 18029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-oprab 7279 df-lub 18064 df-join 18066 |
This theorem is referenced by: joindm3 46263 toslat 46268 |
Copyright terms: Public domain | W3C validator |