![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > joindm2 | Structured version Visualization version GIF version |
Description: The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
joindm2.b | ⊢ 𝐵 = (Base‘𝐾) |
joindm2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joindm2.u | ⊢ 𝑈 = (lub‘𝐾) |
joindm2.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
joindm2 | ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joindm2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | joindm2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | joindm2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | 1, 2, 3 | joindmss 18449 | . . 3 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
5 | eqss 4024 | . . . 4 ⊢ (dom ∨ = (𝐵 × 𝐵) ↔ (dom ∨ ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ∨ )) | |
6 | 5 | baib 535 | . . 3 ⊢ (dom ∨ ⊆ (𝐵 × 𝐵) → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
8 | relxp 5718 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
9 | ssrel 5806 | . . 3 ⊢ (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) |
11 | opelxp 5736 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
13 | joindm2.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
14 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ V) |
16 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ V) |
18 | 13, 2, 3, 15, 17 | joindef 18446 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom 𝑈)) |
19 | 12, 18 | imbi12d 344 | . . . 4 ⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
20 | 19 | 2albidv 1922 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
21 | r2al 3201 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈)) | |
22 | 20, 21 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
23 | 7, 10, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 {cpr 4650 〈cop 4654 × cxp 5698 dom cdm 5700 Rel wrel 5705 ‘cfv 6573 Basecbs 17258 lubclub 18379 joincjn 18381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-oprab 7452 df-lub 18416 df-join 18418 |
This theorem is referenced by: joindm3 48649 toslat 48654 |
Copyright terms: Public domain | W3C validator |