| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > joindm2 | Structured version Visualization version GIF version | ||
| Description: The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| joindm2.b | ⊢ 𝐵 = (Base‘𝐾) |
| joindm2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| joindm2.u | ⊢ 𝑈 = (lub‘𝐾) |
| joindm2.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| joindm2 | ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindm2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | joindm2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | joindm2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 4 | 1, 2, 3 | joindmss 18398 | . . 3 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
| 5 | eqss 3981 | . . . 4 ⊢ (dom ∨ = (𝐵 × 𝐵) ↔ (dom ∨ ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ∨ )) | |
| 6 | 5 | baib 535 | . . 3 ⊢ (dom ∨ ⊆ (𝐵 × 𝐵) → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
| 8 | relxp 5685 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
| 9 | ssrel 5774 | . . 3 ⊢ (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) |
| 11 | opelxp 5703 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 13 | joindm2.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
| 14 | vex 3468 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ V) |
| 16 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ V) |
| 18 | 13, 2, 3, 15, 17 | joindef 18395 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom 𝑈)) |
| 19 | 12, 18 | imbi12d 344 | . . . 4 ⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
| 20 | 19 | 2albidv 1922 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
| 21 | r2al 3182 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈)) | |
| 22 | 20, 21 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
| 23 | 7, 10, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3464 ⊆ wss 3933 {cpr 4610 〈cop 4614 × cxp 5665 dom cdm 5667 Rel wrel 5672 ‘cfv 6542 Basecbs 17230 lubclub 18330 joincjn 18332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-oprab 7418 df-lub 18365 df-join 18367 |
| This theorem is referenced by: joindm3 48814 toslat 48827 |
| Copyright terms: Public domain | W3C validator |