![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > joindm2 | Structured version Visualization version GIF version |
Description: The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
joindm2.b | ⊢ 𝐵 = (Base‘𝐾) |
joindm2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joindm2.u | ⊢ 𝑈 = (lub‘𝐾) |
joindm2.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
joindm2 | ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joindm2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | joindm2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | joindm2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | 1, 2, 3 | joindmss 18404 | . . 3 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
5 | eqss 3995 | . . . 4 ⊢ (dom ∨ = (𝐵 × 𝐵) ↔ (dom ∨ ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ∨ )) | |
6 | 5 | baib 534 | . . 3 ⊢ (dom ∨ ⊆ (𝐵 × 𝐵) → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∨ )) |
8 | relxp 5700 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
9 | ssrel 5788 | . . 3 ⊢ (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) ⊆ dom ∨ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ))) |
11 | opelxp 5718 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
13 | joindm2.u | . . . . . 6 ⊢ 𝑈 = (lub‘𝐾) | |
14 | vex 3466 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ V) |
16 | vex 3466 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ V) |
18 | 13, 2, 3, 15, 17 | joindef 18401 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom 𝑈)) |
19 | 12, 18 | imbi12d 343 | . . . 4 ⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
20 | 19 | 2albidv 1919 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))) |
21 | r2al 3185 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝑈)) | |
22 | 20, 21 | bitr4di 288 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∨ ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
23 | 7, 10, 22 | 3bitrd 304 | 1 ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 ⊆ wss 3947 {cpr 4635 〈cop 4639 × cxp 5680 dom cdm 5682 Rel wrel 5687 ‘cfv 6554 Basecbs 17213 lubclub 18334 joincjn 18336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-oprab 7428 df-lub 18371 df-join 18373 |
This theorem is referenced by: joindm3 48303 toslat 48308 |
Copyright terms: Public domain | W3C validator |