Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  joindm2 Structured version   Visualization version   GIF version

Theorem joindm2 48953
Description: The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
joindm2.b 𝐵 = (Base‘𝐾)
joindm2.k (𝜑𝐾𝑉)
joindm2.u 𝑈 = (lub‘𝐾)
joindm2.j = (join‘𝐾)
Assertion
Ref Expression
joindm2 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝑈))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem joindm2
StepHypRef Expression
1 joindm2.b . . . 4 𝐵 = (Base‘𝐾)
2 joindm2.j . . . 4 = (join‘𝐾)
3 joindm2.k . . . 4 (𝜑𝐾𝑉)
41, 2, 3joindmss 18301 . . 3 (𝜑 → dom ⊆ (𝐵 × 𝐵))
5 eqss 3953 . . . 4 (dom = (𝐵 × 𝐵) ↔ (dom ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ))
65baib 535 . . 3 (dom ⊆ (𝐵 × 𝐵) → (dom = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ))
74, 6syl 17 . 2 (𝜑 → (dom = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ))
8 relxp 5641 . . 3 Rel (𝐵 × 𝐵)
9 ssrel 5730 . . 3 (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom )))
108, 9mp1i 13 . 2 (𝜑 → ((𝐵 × 𝐵) ⊆ dom ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom )))
11 opelxp 5659 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ↔ (𝑥𝐵𝑦𝐵))
1211a1i 11 . . . . 5 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ↔ (𝑥𝐵𝑦𝐵)))
13 joindm2.u . . . . . 6 𝑈 = (lub‘𝐾)
14 vex 3442 . . . . . . 7 𝑥 ∈ V
1514a1i 11 . . . . . 6 (𝜑𝑥 ∈ V)
16 vex 3442 . . . . . . 7 𝑦 ∈ V
1716a1i 11 . . . . . 6 (𝜑𝑦 ∈ V)
1813, 2, 3, 15, 17joindef 18298 . . . . 5 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom ↔ {𝑥, 𝑦} ∈ dom 𝑈))
1912, 18imbi12d 344 . . . 4 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom ) ↔ ((𝑥𝐵𝑦𝐵) → {𝑥, 𝑦} ∈ dom 𝑈)))
20192albidv 1923 . . 3 (𝜑 → (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom ) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → {𝑥, 𝑦} ∈ dom 𝑈)))
21 r2al 3165 . . 3 (∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝑈 ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → {𝑥, 𝑦} ∈ dom 𝑈))
2220, 21bitr4di 289 . 2 (𝜑 → (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom ) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝑈))
237, 10, 223bitrd 305 1 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  {cpr 4581  cop 4585   × cxp 5621  dom cdm 5623  Rel wrel 5628  cfv 6486  Basecbs 17138  lubclub 18233  joincjn 18235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-oprab 7357  df-lub 18268  df-join 18270
This theorem is referenced by:  joindm3  48954  toslat  48967
  Copyright terms: Public domain W3C validator