| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meetdm2 | Structured version Visualization version GIF version | ||
| Description: The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| joindm2.b | ⊢ 𝐵 = (Base‘𝐾) |
| joindm2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetdm2.g | ⊢ 𝐺 = (glb‘𝐾) |
| meetdm2.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| meetdm2 | ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindm2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | meetdm2.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 3 | joindm2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 4 | 1, 2, 3 | meetdmss 18359 | . . 3 ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) |
| 5 | eqss 3965 | . . . 4 ⊢ (dom ∧ = (𝐵 × 𝐵) ↔ (dom ∧ ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ∧ )) | |
| 6 | 5 | baib 535 | . . 3 ⊢ (dom ∧ ⊆ (𝐵 × 𝐵) → (dom ∧ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∧ )) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∧ )) |
| 8 | relxp 5659 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
| 9 | ssrel 5748 | . . 3 ⊢ (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ∧ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ))) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) ⊆ dom ∧ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ))) |
| 11 | opelxp 5677 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 13 | meetdm2.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
| 14 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ V) |
| 16 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ V) |
| 18 | 13, 2, 3, 15, 17 | meetdef 18356 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∧ ↔ {𝑥, 𝑦} ∈ dom 𝐺)) |
| 19 | 12, 18 | imbi12d 344 | . . . 4 ⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺))) |
| 20 | 19 | 2albidv 1923 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺))) |
| 21 | r2al 3174 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺)) | |
| 22 | 20, 21 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
| 23 | 7, 10, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 {cpr 4594 〈cop 4598 × cxp 5639 dom cdm 5641 Rel wrel 5646 ‘cfv 6514 Basecbs 17186 glbcglb 18278 meetcmee 18280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-oprab 7394 df-glb 18313 df-meet 18315 |
| This theorem is referenced by: meetdm3 48963 toslat 48974 |
| Copyright terms: Public domain | W3C validator |