Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meetdm2 | Structured version Visualization version GIF version |
Description: The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
joindm2.b | ⊢ 𝐵 = (Base‘𝐾) |
joindm2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetdm2.g | ⊢ 𝐺 = (glb‘𝐾) |
meetdm2.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
meetdm2 | ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joindm2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | meetdm2.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | joindm2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | 1, 2, 3 | meetdmss 18208 | . . 3 ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) |
5 | eqss 3947 | . . . 4 ⊢ (dom ∧ = (𝐵 × 𝐵) ↔ (dom ∧ ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ∧ )) | |
6 | 5 | baib 536 | . . 3 ⊢ (dom ∧ ⊆ (𝐵 × 𝐵) → (dom ∧ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∧ )) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∧ )) |
8 | relxp 5638 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
9 | ssrel 5724 | . . 3 ⊢ (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ∧ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ))) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) ⊆ dom ∧ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ))) |
11 | opelxp 5656 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
13 | meetdm2.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
14 | vex 3445 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ V) |
16 | vex 3445 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ V) |
18 | 13, 2, 3, 15, 17 | meetdef 18205 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∧ ↔ {𝑥, 𝑦} ∈ dom 𝐺)) |
19 | 12, 18 | imbi12d 344 | . . . 4 ⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺))) |
20 | 19 | 2albidv 1925 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺))) |
21 | r2al 3187 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺)) | |
22 | 20, 21 | bitr4di 288 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
23 | 7, 10, 22 | 3bitrd 304 | 1 ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 ⊆ wss 3898 {cpr 4575 〈cop 4579 × cxp 5618 dom cdm 5620 Rel wrel 5625 ‘cfv 6479 Basecbs 17009 glbcglb 18125 meetcmee 18127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-oprab 7341 df-glb 18162 df-meet 18164 |
This theorem is referenced by: meetdm3 46625 toslat 46628 |
Copyright terms: Public domain | W3C validator |