Step | Hyp | Ref
| Expression |
1 | | joindm2.b |
. . . 4
β’ π΅ = (BaseβπΎ) |
2 | | meetdm2.m |
. . . 4
β’ β§ =
(meetβπΎ) |
3 | | joindm2.k |
. . . 4
β’ (π β πΎ β π) |
4 | 1, 2, 3 | meetdmss 18350 |
. . 3
β’ (π β dom β§ β (π΅ Γ π΅)) |
5 | | eqss 3997 |
. . . 4
β’ (dom
β§ =
(π΅ Γ π΅) β (dom β§ β (π΅ Γ π΅) β§ (π΅ Γ π΅) β dom β§ )) |
6 | 5 | baib 536 |
. . 3
β’ (dom
β§
β (π΅ Γ π΅) β (dom β§ = (π΅ Γ π΅) β (π΅ Γ π΅) β dom β§ )) |
7 | 4, 6 | syl 17 |
. 2
β’ (π β (dom β§ = (π΅ Γ π΅) β (π΅ Γ π΅) β dom β§ )) |
8 | | relxp 5694 |
. . 3
β’ Rel
(π΅ Γ π΅) |
9 | | ssrel 5782 |
. . 3
β’ (Rel
(π΅ Γ π΅) β ((π΅ Γ π΅) β dom β§ β βπ₯βπ¦(β¨π₯, π¦β© β (π΅ Γ π΅) β β¨π₯, π¦β© β dom β§ ))) |
10 | 8, 9 | mp1i 13 |
. 2
β’ (π β ((π΅ Γ π΅) β dom β§ β βπ₯βπ¦(β¨π₯, π¦β© β (π΅ Γ π΅) β β¨π₯, π¦β© β dom β§ ))) |
11 | | opelxp 5712 |
. . . . . 6
β’
(β¨π₯, π¦β© β (π΅ Γ π΅) β (π₯ β π΅ β§ π¦ β π΅)) |
12 | 11 | a1i 11 |
. . . . 5
β’ (π β (β¨π₯, π¦β© β (π΅ Γ π΅) β (π₯ β π΅ β§ π¦ β π΅))) |
13 | | meetdm2.g |
. . . . . 6
β’ πΊ = (glbβπΎ) |
14 | | vex 3478 |
. . . . . . 7
β’ π₯ β V |
15 | 14 | a1i 11 |
. . . . . 6
β’ (π β π₯ β V) |
16 | | vex 3478 |
. . . . . . 7
β’ π¦ β V |
17 | 16 | a1i 11 |
. . . . . 6
β’ (π β π¦ β V) |
18 | 13, 2, 3, 15, 17 | meetdef 18347 |
. . . . 5
β’ (π β (β¨π₯, π¦β© β dom β§ β {π₯, π¦} β dom πΊ)) |
19 | 12, 18 | imbi12d 344 |
. . . 4
β’ (π β ((β¨π₯, π¦β© β (π΅ Γ π΅) β β¨π₯, π¦β© β dom β§ ) β ((π₯ β π΅ β§ π¦ β π΅) β {π₯, π¦} β dom πΊ))) |
20 | 19 | 2albidv 1926 |
. . 3
β’ (π β (βπ₯βπ¦(β¨π₯, π¦β© β (π΅ Γ π΅) β β¨π₯, π¦β© β dom β§ ) β βπ₯βπ¦((π₯ β π΅ β§ π¦ β π΅) β {π₯, π¦} β dom πΊ))) |
21 | | r2al 3194 |
. . 3
β’
(βπ₯ β
π΅ βπ¦ β π΅ {π₯, π¦} β dom πΊ β βπ₯βπ¦((π₯ β π΅ β§ π¦ β π΅) β {π₯, π¦} β dom πΊ)) |
22 | 20, 21 | bitr4di 288 |
. 2
β’ (π β (βπ₯βπ¦(β¨π₯, π¦β© β (π΅ Γ π΅) β β¨π₯, π¦β© β dom β§ ) β βπ₯ β π΅ βπ¦ β π΅ {π₯, π¦} β dom πΊ)) |
23 | 7, 10, 22 | 3bitrd 304 |
1
β’ (π β (dom β§ = (π΅ Γ π΅) β βπ₯ β π΅ βπ¦ β π΅ {π₯, π¦} β dom πΊ)) |