Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meetdm2 Structured version   Visualization version   GIF version

Theorem meetdm2 48944
Description: The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
joindm2.b 𝐵 = (Base‘𝐾)
joindm2.k (𝜑𝐾𝑉)
meetdm2.g 𝐺 = (glb‘𝐾)
meetdm2.m = (meet‘𝐾)
Assertion
Ref Expression
meetdm2 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem meetdm2
StepHypRef Expression
1 joindm2.b . . . 4 𝐵 = (Base‘𝐾)
2 meetdm2.m . . . 4 = (meet‘𝐾)
3 joindm2.k . . . 4 (𝜑𝐾𝑉)
41, 2, 3meetdmss 18403 . . 3 (𝜑 → dom ⊆ (𝐵 × 𝐵))
5 eqss 3974 . . . 4 (dom = (𝐵 × 𝐵) ↔ (dom ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ))
65baib 535 . . 3 (dom ⊆ (𝐵 × 𝐵) → (dom = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ))
74, 6syl 17 . 2 (𝜑 → (dom = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ))
8 relxp 5672 . . 3 Rel (𝐵 × 𝐵)
9 ssrel 5761 . . 3 (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom )))
108, 9mp1i 13 . 2 (𝜑 → ((𝐵 × 𝐵) ⊆ dom ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom )))
11 opelxp 5690 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ↔ (𝑥𝐵𝑦𝐵))
1211a1i 11 . . . . 5 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) ↔ (𝑥𝐵𝑦𝐵)))
13 meetdm2.g . . . . . 6 𝐺 = (glb‘𝐾)
14 vex 3463 . . . . . . 7 𝑥 ∈ V
1514a1i 11 . . . . . 6 (𝜑𝑥 ∈ V)
16 vex 3463 . . . . . . 7 𝑦 ∈ V
1716a1i 11 . . . . . 6 (𝜑𝑦 ∈ V)
1813, 2, 3, 15, 17meetdef 18400 . . . . 5 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom ↔ {𝑥, 𝑦} ∈ dom 𝐺))
1912, 18imbi12d 344 . . . 4 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom ) ↔ ((𝑥𝐵𝑦𝐵) → {𝑥, 𝑦} ∈ dom 𝐺)))
20192albidv 1923 . . 3 (𝜑 → (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom ) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → {𝑥, 𝑦} ∈ dom 𝐺)))
21 r2al 3180 . . 3 (∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → {𝑥, 𝑦} ∈ dom 𝐺))
2220, 21bitr4di 289 . 2 (𝜑 → (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom ) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
237, 10, 223bitrd 305 1 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  {cpr 4603  cop 4607   × cxp 5652  dom cdm 5654  Rel wrel 5659  cfv 6531  Basecbs 17228  glbcglb 18322  meetcmee 18324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-oprab 7409  df-glb 18357  df-meet 18359
This theorem is referenced by:  meetdm3  48945  toslat  48956
  Copyright terms: Public domain W3C validator