| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meetdm2 | Structured version Visualization version GIF version | ||
| Description: The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| joindm2.b | ⊢ 𝐵 = (Base‘𝐾) |
| joindm2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetdm2.g | ⊢ 𝐺 = (glb‘𝐾) |
| meetdm2.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| meetdm2 | ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindm2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | meetdm2.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 3 | joindm2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 4 | 1, 2, 3 | meetdmss 18403 | . . 3 ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) |
| 5 | eqss 3974 | . . . 4 ⊢ (dom ∧ = (𝐵 × 𝐵) ↔ (dom ∧ ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) ⊆ dom ∧ )) | |
| 6 | 5 | baib 535 | . . 3 ⊢ (dom ∧ ⊆ (𝐵 × 𝐵) → (dom ∧ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∧ )) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ (𝐵 × 𝐵) ⊆ dom ∧ )) |
| 8 | relxp 5672 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
| 9 | ssrel 5761 | . . 3 ⊢ (Rel (𝐵 × 𝐵) → ((𝐵 × 𝐵) ⊆ dom ∧ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ))) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐵) ⊆ dom ∧ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ))) |
| 11 | opelxp 5690 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 13 | meetdm2.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
| 14 | vex 3463 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ V) |
| 16 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ V) |
| 18 | 13, 2, 3, 15, 17 | meetdef 18400 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∧ ↔ {𝑥, 𝑦} ∈ dom 𝐺)) |
| 19 | 12, 18 | imbi12d 344 | . . . 4 ⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺))) |
| 20 | 19 | 2albidv 1923 | . . 3 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺))) |
| 21 | r2al 3180 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ dom 𝐺)) | |
| 22 | 20, 21 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵) → 〈𝑥, 𝑦〉 ∈ dom ∧ ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
| 23 | 7, 10, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 {cpr 4603 〈cop 4607 × cxp 5652 dom cdm 5654 Rel wrel 5659 ‘cfv 6531 Basecbs 17228 glbcglb 18322 meetcmee 18324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-oprab 7409 df-glb 18357 df-meet 18359 |
| This theorem is referenced by: meetdm3 48945 toslat 48956 |
| Copyright terms: Public domain | W3C validator |