Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1smat1 Structured version   Visualization version   GIF version

Theorem 1smat1 31763
Description: The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 21743. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
1smat1.1 1 = (1r‘((1...𝑁) Mat 𝑅))
1smat1.r (𝜑𝑅 ∈ Ring)
1smat1.n (𝜑𝑁 ∈ ℕ)
1smat1.i (𝜑𝐼 ∈ (1...𝑁))
Assertion
Ref Expression
1smat1 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))

Proof of Theorem 1smat1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (𝐼(subMat1‘ 1 )𝐼) = (𝐼(subMat1‘ 1 )𝐼)
2 1smat1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
32adantr 481 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
4 1smat1.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑁))
54adantr 481 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁))
6 1smat1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
7 fzfi 13703 . . . . . . . 8 (1...𝑁) ∈ Fin
8 eqid 2740 . . . . . . . . 9 ((1...𝑁) Mat 𝑅) = ((1...𝑁) Mat 𝑅)
9 eqid 2740 . . . . . . . . 9 (Base‘((1...𝑁) Mat 𝑅)) = (Base‘((1...𝑁) Mat 𝑅))
10 1smat1.1 . . . . . . . . 9 1 = (1r‘((1...𝑁) Mat 𝑅))
118, 9, 10mat1bas 21609 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1...𝑁) ∈ Fin) → 1 ∈ (Base‘((1...𝑁) Mat 𝑅)))
126, 7, 11sylancl 586 . . . . . . 7 (𝜑1 ∈ (Base‘((1...𝑁) Mat 𝑅)))
13 eqid 2740 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
148, 13matbas2 21581 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅)))
157, 6, 14sylancr 587 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅)))
1612, 15eleqtrrd 2844 . . . . . 6 (𝜑1 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
1716adantr 481 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 1 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
18 fz1ssnn 13298 . . . . . 6 (1...(𝑁 − 1)) ⊆ ℕ
19 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1)))
2018, 19sselid 3924 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ)
21 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1)))
2218, 21sselid 3924 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ)
23 eqidd 2741 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)))
24 eqidd 2741 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)))
251, 3, 3, 5, 5, 17, 20, 22, 23, 24smatlem 31756 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
26 eqid 2740 . . . . 5 (1r𝑅) = (1r𝑅)
27 eqid 2740 . . . . 5 (0g𝑅) = (0g𝑅)
287a1i 11 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...𝑁) ∈ Fin)
296adantr 481 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑅 ∈ Ring)
30 nnuz 12632 . . . . . . . . 9 ℕ = (ℤ‘1)
3120, 30eleqtrdi 2851 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (ℤ‘1))
32 fznatpl1 13321 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → (𝑖 + 1) ∈ (1...𝑁))
333, 19, 32syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 + 1) ∈ (1...𝑁))
34 peano2fzr 13280 . . . . . . . 8 ((𝑖 ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
3531, 33, 34syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁))
3635, 33jca 512 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)))
37 eleq1 2828 . . . . . . 7 (𝑖 = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → (𝑖 ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)))
38 eleq1 2828 . . . . . . 7 ((𝑖 + 1) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → ((𝑖 + 1) ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)))
3937, 38ifboth 4504 . . . . . 6 ((𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))
4036, 39syl 17 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))
4122, 30eleqtrdi 2851 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (ℤ‘1))
42 fznatpl1 13321 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝑗 + 1) ∈ (1...𝑁))
433, 21, 42syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 + 1) ∈ (1...𝑁))
44 peano2fzr 13280 . . . . . . . 8 ((𝑗 ∈ (ℤ‘1) ∧ (𝑗 + 1) ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
4541, 43, 44syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁))
4645, 43jca 512 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)))
47 eleq1 2828 . . . . . . 7 (𝑗 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → (𝑗 ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)))
48 eleq1 2828 . . . . . . 7 ((𝑗 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → ((𝑗 + 1) ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)))
4947, 48ifboth 4504 . . . . . 6 ((𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))
5046, 49syl 17 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))
518, 26, 27, 28, 29, 40, 50, 10mat1ov 21608 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))) = if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)))
52 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → 𝑖 < 𝐼)
5352iftrued 4473 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = 𝑖)
5453eqeq1d 2742 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
55 simpr 485 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
5655iftrued 4473 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗)
5756eqeq2d 2751 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
58 simpr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼)
5958iffalsed 4476 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1))
6059eqeq2d 2751 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = (𝑗 + 1)))
6120nnred 11999 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℝ)
6261ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ∈ ℝ)
63 fz1ssnn 13298 . . . . . . . . . . . . . . . . 17 (1...𝑁) ⊆ ℕ
6463, 4sselid 3924 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℕ)
6564nnred 11999 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ)
6665ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
6722nnred 11999 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℝ)
6867ad2antrr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
69 1red 10987 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 1 ∈ ℝ)
7068, 69readdcld 11015 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑗 + 1) ∈ ℝ)
7152adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝐼)
7264nnzd 12436 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℤ)
7372ad3antrrr 727 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℤ)
7422nnzd 12436 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℤ)
7574ad2antrr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℤ)
7666, 68, 58nltled 11136 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼𝑗)
77 zleltp1 12382 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐼𝑗𝐼 < (𝑗 + 1)))
7877biimpa 477 . . . . . . . . . . . . . . 15 (((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ 𝐼𝑗) → 𝐼 < (𝑗 + 1))
7973, 75, 76, 78syl21anc 835 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 < (𝑗 + 1))
8062, 66, 70, 71, 79lttrd 11147 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < (𝑗 + 1))
8162, 80ltned 11122 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ≠ (𝑗 + 1))
8281neneqd 2950 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = (𝑗 + 1))
8362, 66, 68, 71, 76ltletrd 11146 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝑗)
8462, 83ltned 11122 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖𝑗)
8584neneqd 2950 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗)
8682, 852falsed 377 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = (𝑗 + 1) ↔ 𝑖 = 𝑗))
8760, 86bitrd 278 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
8857, 87pm2.61dan 810 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
8954, 88bitrd 278 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
90 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ¬ 𝑖 < 𝐼)
9190iffalsed 4476 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = (𝑖 + 1))
9291eqeq1d 2742 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
93 simpr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
9493iftrued 4473 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗)
9594eqeq2d 2751 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = 𝑗))
9667ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
9765ad3antrrr 727 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
9861ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℝ)
99 1red 10987 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 1 ∈ ℝ)
10098, 99readdcld 11015 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ∈ ℝ)
10172ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℤ)
10220nnzd 12436 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℤ)
103102ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℤ)
10490adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 < 𝐼)
10597, 98, 104nltled 11136 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼𝑖)
106 zleltp1 12382 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐼𝑖𝐼 < (𝑖 + 1)))
107106biimpa 477 . . . . . . . . . . . . . . . 16 (((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐼𝑖) → 𝐼 < (𝑖 + 1))
108101, 103, 105, 107syl21anc 835 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 < (𝑖 + 1))
10996, 97, 100, 93, 108lttrd 11147 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < (𝑖 + 1))
11096, 109ltned 11122 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ≠ (𝑖 + 1))
111110necomd 3001 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ≠ 𝑗)
112111neneqd 2950 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ (𝑖 + 1) = 𝑗)
11396, 97, 98, 93, 105ltletrd 11146 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝑖)
11496, 113ltned 11122 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗𝑖)
115114necomd 3001 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖𝑗)
116115neneqd 2950 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗)
117112, 1162falsed 377 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = 𝑗𝑖 = 𝑗))
11895, 117bitrd 278 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
119 simpr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼)
120119iffalsed 4476 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1))
121120eqeq2d 2751 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = (𝑗 + 1)))
12220nncnd 12000 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℂ)
123122ad3antrrr 727 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 ∈ ℂ)
12422nncnd 12000 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℂ)
125124ad3antrrr 727 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑗 ∈ ℂ)
126 1cnd 10981 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 1 ∈ ℂ)
127 simpr 485 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → (𝑖 + 1) = (𝑗 + 1))
128123, 125, 126, 127addcan2ad 11192 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 = 𝑗)
129 simpr 485 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
130129oveq1d 7287 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → (𝑖 + 1) = (𝑗 + 1))
131128, 130impbida 798 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = (𝑗 + 1) ↔ 𝑖 = 𝑗))
132121, 131bitrd 278 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
133118, 132pm2.61dan 810 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
13492, 133bitrd 278 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
13589, 134pm2.61dan 810 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
136135ifbid 4488 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
137 eqid 2740 . . . . . 6 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
138 fzfid 13704 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ∈ Fin)
139 eqid 2740 . . . . . 6 (1r‘((1...(𝑁 − 1)) Mat 𝑅)) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))
140137, 26, 27, 138, 29, 19, 21, 139mat1ov 21608 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
141136, 140eqtr4d 2783 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
14225, 51, 1413eqtrd 2784 . . 3 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
143142ralrimivva 3117 . 2 (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
1441, 2, 2, 4, 4, 16smatrcl 31755 . . . 4 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
145 elmapfn 8645 . . . 4 ((𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
146144, 145syl 17 . . 3 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
147 fzfi 13703 . . . . . 6 (1...(𝑁 − 1)) ∈ Fin
148 eqid 2740 . . . . . . 7 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
149137, 148, 139mat1bas 21609 . . . . . 6 ((𝑅 ∈ Ring ∧ (1...(𝑁 − 1)) ∈ Fin) → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1506, 147, 149sylancl 586 . . . . 5 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
151137, 13matbas2 21581 . . . . . 6 (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
152147, 6, 151sylancr 587 . . . . 5 (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
153150, 152eleqtrrd 2844 . . . 4 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
154 elmapfn 8645 . . . 4 ((1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
155153, 154syl 17 . . 3 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
156 eqfnov2 7399 . . 3 (((𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))) ∧ (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)))
157146, 155, 156syl2anc 584 . 2 (𝜑 → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)))
158143, 157mpbird 256 1 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  ifcif 4465   class class class wbr 5079   × cxp 5588   Fn wfn 6427  cfv 6432  (class class class)co 7272  m cmap 8607  Fincfn 8725  cc 10880  cr 10881  1c1 10883   + caddc 10885   < clt 11020  cle 11021  cmin 11216  cn 11984  cz 12330  cuz 12593  ...cfz 13250  Basecbs 16923  0gc0g 17161  1rcur 19748  Ringcrg 19794   Mat cmat 21565  subMat1csmat 31752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-sup 9189  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-fz 13251  df-fzo 13394  df-seq 13733  df-hash 14056  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-hom 16997  df-cco 16998  df-0g 17163  df-gsum 17164  df-prds 17169  df-pws 17171  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-mhm 18441  df-submnd 18442  df-grp 18591  df-minusg 18592  df-sbg 18593  df-mulg 18712  df-subg 18763  df-ghm 18843  df-cntz 18934  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-ring 19796  df-subrg 20033  df-lmod 20136  df-lss 20205  df-sra 20445  df-rgmod 20446  df-dsmm 20950  df-frlm 20965  df-mamu 21544  df-mat 21566  df-smat 31753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator