Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1smat1 Structured version   Visualization version   GIF version

Theorem 1smat1 33794
Description: The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 22470. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
1smat1.1 1 = (1r‘((1...𝑁) Mat 𝑅))
1smat1.r (𝜑𝑅 ∈ Ring)
1smat1.n (𝜑𝑁 ∈ ℕ)
1smat1.i (𝜑𝐼 ∈ (1...𝑁))
Assertion
Ref Expression
1smat1 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))

Proof of Theorem 1smat1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (𝐼(subMat1‘ 1 )𝐼) = (𝐼(subMat1‘ 1 )𝐼)
2 1smat1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
4 1smat1.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑁))
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁))
6 1smat1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
7 fzfi 13937 . . . . . . . 8 (1...𝑁) ∈ Fin
8 eqid 2729 . . . . . . . . 9 ((1...𝑁) Mat 𝑅) = ((1...𝑁) Mat 𝑅)
9 eqid 2729 . . . . . . . . 9 (Base‘((1...𝑁) Mat 𝑅)) = (Base‘((1...𝑁) Mat 𝑅))
10 1smat1.1 . . . . . . . . 9 1 = (1r‘((1...𝑁) Mat 𝑅))
118, 9, 10mat1bas 22336 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1...𝑁) ∈ Fin) → 1 ∈ (Base‘((1...𝑁) Mat 𝑅)))
126, 7, 11sylancl 586 . . . . . . 7 (𝜑1 ∈ (Base‘((1...𝑁) Mat 𝑅)))
13 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
148, 13matbas2 22308 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅)))
157, 6, 14sylancr 587 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅)))
1612, 15eleqtrrd 2831 . . . . . 6 (𝜑1 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
1716adantr 480 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 1 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
18 fz1ssnn 13516 . . . . . 6 (1...(𝑁 − 1)) ⊆ ℕ
19 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1)))
2018, 19sselid 3944 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ)
21 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1)))
2218, 21sselid 3944 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ)
23 eqidd 2730 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)))
24 eqidd 2730 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)))
251, 3, 3, 5, 5, 17, 20, 22, 23, 24smatlem 33787 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
26 eqid 2729 . . . . 5 (1r𝑅) = (1r𝑅)
27 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
287a1i 11 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...𝑁) ∈ Fin)
296adantr 480 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑅 ∈ Ring)
30 nnuz 12836 . . . . . . . . 9 ℕ = (ℤ‘1)
3120, 30eleqtrdi 2838 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (ℤ‘1))
32 fznatpl1 13539 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → (𝑖 + 1) ∈ (1...𝑁))
333, 19, 32syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 + 1) ∈ (1...𝑁))
34 peano2fzr 13498 . . . . . . . 8 ((𝑖 ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
3531, 33, 34syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁))
3635, 33jca 511 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)))
37 eleq1 2816 . . . . . . 7 (𝑖 = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → (𝑖 ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)))
38 eleq1 2816 . . . . . . 7 ((𝑖 + 1) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → ((𝑖 + 1) ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)))
3937, 38ifboth 4528 . . . . . 6 ((𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))
4036, 39syl 17 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))
4122, 30eleqtrdi 2838 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (ℤ‘1))
42 fznatpl1 13539 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝑗 + 1) ∈ (1...𝑁))
433, 21, 42syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 + 1) ∈ (1...𝑁))
44 peano2fzr 13498 . . . . . . . 8 ((𝑗 ∈ (ℤ‘1) ∧ (𝑗 + 1) ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
4541, 43, 44syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁))
4645, 43jca 511 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)))
47 eleq1 2816 . . . . . . 7 (𝑗 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → (𝑗 ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)))
48 eleq1 2816 . . . . . . 7 ((𝑗 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → ((𝑗 + 1) ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)))
4947, 48ifboth 4528 . . . . . 6 ((𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))
5046, 49syl 17 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))
518, 26, 27, 28, 29, 40, 50, 10mat1ov 22335 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))) = if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)))
52 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → 𝑖 < 𝐼)
5352iftrued 4496 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = 𝑖)
5453eqeq1d 2731 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
55 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
5655iftrued 4496 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗)
5756eqeq2d 2740 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
58 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼)
5958iffalsed 4499 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1))
6059eqeq2d 2740 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = (𝑗 + 1)))
6120nnred 12201 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℝ)
6261ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ∈ ℝ)
63 fz1ssnn 13516 . . . . . . . . . . . . . . . . 17 (1...𝑁) ⊆ ℕ
6463, 4sselid 3944 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℕ)
6564nnred 12201 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ)
6665ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
6722nnred 12201 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℝ)
6867ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
69 1red 11175 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 1 ∈ ℝ)
7068, 69readdcld 11203 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑗 + 1) ∈ ℝ)
7152adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝐼)
7264nnzd 12556 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℤ)
7372ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℤ)
7422nnzd 12556 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℤ)
7574ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℤ)
7666, 68, 58nltled 11324 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼𝑗)
77 zleltp1 12584 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐼𝑗𝐼 < (𝑗 + 1)))
7877biimpa 476 . . . . . . . . . . . . . . 15 (((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ 𝐼𝑗) → 𝐼 < (𝑗 + 1))
7973, 75, 76, 78syl21anc 837 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 < (𝑗 + 1))
8062, 66, 70, 71, 79lttrd 11335 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < (𝑗 + 1))
8162, 80ltned 11310 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ≠ (𝑗 + 1))
8281neneqd 2930 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = (𝑗 + 1))
8362, 66, 68, 71, 76ltletrd 11334 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝑗)
8462, 83ltned 11310 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖𝑗)
8584neneqd 2930 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗)
8682, 852falsed 376 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = (𝑗 + 1) ↔ 𝑖 = 𝑗))
8760, 86bitrd 279 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
8857, 87pm2.61dan 812 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
8954, 88bitrd 279 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
90 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ¬ 𝑖 < 𝐼)
9190iffalsed 4499 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = (𝑖 + 1))
9291eqeq1d 2731 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
93 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
9493iftrued 4496 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗)
9594eqeq2d 2740 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = 𝑗))
9667ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
9765ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
9861ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℝ)
99 1red 11175 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 1 ∈ ℝ)
10098, 99readdcld 11203 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ∈ ℝ)
10172ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℤ)
10220nnzd 12556 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℤ)
103102ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℤ)
10490adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 < 𝐼)
10597, 98, 104nltled 11324 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼𝑖)
106 zleltp1 12584 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐼𝑖𝐼 < (𝑖 + 1)))
107106biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐼𝑖) → 𝐼 < (𝑖 + 1))
108101, 103, 105, 107syl21anc 837 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 < (𝑖 + 1))
10996, 97, 100, 93, 108lttrd 11335 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < (𝑖 + 1))
11096, 109ltned 11310 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ≠ (𝑖 + 1))
111110necomd 2980 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ≠ 𝑗)
112111neneqd 2930 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ (𝑖 + 1) = 𝑗)
11396, 97, 98, 93, 105ltletrd 11334 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝑖)
11496, 113ltned 11310 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗𝑖)
115114necomd 2980 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖𝑗)
116115neneqd 2930 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗)
117112, 1162falsed 376 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = 𝑗𝑖 = 𝑗))
11895, 117bitrd 279 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
119 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼)
120119iffalsed 4499 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1))
121120eqeq2d 2740 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = (𝑗 + 1)))
12220nncnd 12202 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℂ)
123122ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 ∈ ℂ)
12422nncnd 12202 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℂ)
125124ad3antrrr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑗 ∈ ℂ)
126 1cnd 11169 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 1 ∈ ℂ)
127 simpr 484 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → (𝑖 + 1) = (𝑗 + 1))
128123, 125, 126, 127addcan2ad 11380 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 = 𝑗)
129 simpr 484 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
130129oveq1d 7402 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → (𝑖 + 1) = (𝑗 + 1))
131128, 130impbida 800 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = (𝑗 + 1) ↔ 𝑖 = 𝑗))
132121, 131bitrd 279 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
133118, 132pm2.61dan 812 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
13492, 133bitrd 279 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
13589, 134pm2.61dan 812 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
136135ifbid 4512 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
137 eqid 2729 . . . . . 6 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
138 fzfid 13938 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ∈ Fin)
139 eqid 2729 . . . . . 6 (1r‘((1...(𝑁 − 1)) Mat 𝑅)) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))
140137, 26, 27, 138, 29, 19, 21, 139mat1ov 22335 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
141136, 140eqtr4d 2767 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
14225, 51, 1413eqtrd 2768 . . 3 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
143142ralrimivva 3180 . 2 (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
1441, 2, 2, 4, 4, 16smatrcl 33786 . . . 4 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
145 elmapfn 8838 . . . 4 ((𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
146144, 145syl 17 . . 3 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
147 fzfi 13937 . . . . . 6 (1...(𝑁 − 1)) ∈ Fin
148 eqid 2729 . . . . . . 7 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
149137, 148, 139mat1bas 22336 . . . . . 6 ((𝑅 ∈ Ring ∧ (1...(𝑁 − 1)) ∈ Fin) → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1506, 147, 149sylancl 586 . . . . 5 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
151137, 13matbas2 22308 . . . . . 6 (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
152147, 6, 151sylancr 587 . . . . 5 (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
153150, 152eleqtrrd 2831 . . . 4 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
154 elmapfn 8838 . . . 4 ((1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
155153, 154syl 17 . . 3 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
156 eqfnov2 7519 . . 3 (((𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))) ∧ (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)))
157146, 155, 156syl2anc 584 . 2 (𝜑 → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)))
158143, 157mpbird 257 1 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ifcif 4488   class class class wbr 5107   × cxp 5636   Fn wfn 6506  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cc 11066  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  cz 12529  cuz 12793  ...cfz 13468  Basecbs 17179  0gc0g 17402  1rcur 20090  Ringcrg 20142   Mat cmat 22294  subMat1csmat 33783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-mamu 22278  df-mat 22295  df-smat 33784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator