Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1smat1 Structured version   Visualization version   GIF version

Theorem 1smat1 33556
Description: The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 22546. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
1smat1.1 1 = (1r‘((1...𝑁) Mat 𝑅))
1smat1.r (𝜑𝑅 ∈ Ring)
1smat1.n (𝜑𝑁 ∈ ℕ)
1smat1.i (𝜑𝐼 ∈ (1...𝑁))
Assertion
Ref Expression
1smat1 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))

Proof of Theorem 1smat1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . 5 (𝐼(subMat1‘ 1 )𝐼) = (𝐼(subMat1‘ 1 )𝐼)
2 1smat1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
32adantr 479 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
4 1smat1.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑁))
54adantr 479 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁))
6 1smat1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
7 fzfi 13978 . . . . . . . 8 (1...𝑁) ∈ Fin
8 eqid 2725 . . . . . . . . 9 ((1...𝑁) Mat 𝑅) = ((1...𝑁) Mat 𝑅)
9 eqid 2725 . . . . . . . . 9 (Base‘((1...𝑁) Mat 𝑅)) = (Base‘((1...𝑁) Mat 𝑅))
10 1smat1.1 . . . . . . . . 9 1 = (1r‘((1...𝑁) Mat 𝑅))
118, 9, 10mat1bas 22412 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1...𝑁) ∈ Fin) → 1 ∈ (Base‘((1...𝑁) Mat 𝑅)))
126, 7, 11sylancl 584 . . . . . . 7 (𝜑1 ∈ (Base‘((1...𝑁) Mat 𝑅)))
13 eqid 2725 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
148, 13matbas2 22384 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅)))
157, 6, 14sylancr 585 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅)))
1612, 15eleqtrrd 2828 . . . . . 6 (𝜑1 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
1716adantr 479 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 1 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
18 fz1ssnn 13572 . . . . . 6 (1...(𝑁 − 1)) ⊆ ℕ
19 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1)))
2018, 19sselid 3974 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ)
21 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1)))
2218, 21sselid 3974 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ)
23 eqidd 2726 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)))
24 eqidd 2726 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)))
251, 3, 3, 5, 5, 17, 20, 22, 23, 24smatlem 33549 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
26 eqid 2725 . . . . 5 (1r𝑅) = (1r𝑅)
27 eqid 2725 . . . . 5 (0g𝑅) = (0g𝑅)
287a1i 11 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...𝑁) ∈ Fin)
296adantr 479 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑅 ∈ Ring)
30 nnuz 12903 . . . . . . . . 9 ℕ = (ℤ‘1)
3120, 30eleqtrdi 2835 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (ℤ‘1))
32 fznatpl1 13595 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → (𝑖 + 1) ∈ (1...𝑁))
333, 19, 32syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 + 1) ∈ (1...𝑁))
34 peano2fzr 13554 . . . . . . . 8 ((𝑖 ∈ (ℤ‘1) ∧ (𝑖 + 1) ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
3531, 33, 34syl2anc 582 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁))
3635, 33jca 510 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)))
37 eleq1 2813 . . . . . . 7 (𝑖 = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → (𝑖 ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)))
38 eleq1 2813 . . . . . . 7 ((𝑖 + 1) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → ((𝑖 + 1) ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)))
3937, 38ifboth 4569 . . . . . 6 ((𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))
4036, 39syl 17 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))
4122, 30eleqtrdi 2835 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (ℤ‘1))
42 fznatpl1 13595 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝑗 + 1) ∈ (1...𝑁))
433, 21, 42syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 + 1) ∈ (1...𝑁))
44 peano2fzr 13554 . . . . . . . 8 ((𝑗 ∈ (ℤ‘1) ∧ (𝑗 + 1) ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
4541, 43, 44syl2anc 582 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁))
4645, 43jca 510 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)))
47 eleq1 2813 . . . . . . 7 (𝑗 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → (𝑗 ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)))
48 eleq1 2813 . . . . . . 7 ((𝑗 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → ((𝑗 + 1) ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)))
4947, 48ifboth 4569 . . . . . 6 ((𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))
5046, 49syl 17 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))
518, 26, 27, 28, 29, 40, 50, 10mat1ov 22411 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))) = if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)))
52 simpr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → 𝑖 < 𝐼)
5352iftrued 4538 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = 𝑖)
5453eqeq1d 2727 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
55 simpr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
5655iftrued 4538 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗)
5756eqeq2d 2736 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
58 simpr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼)
5958iffalsed 4541 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1))
6059eqeq2d 2736 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = (𝑗 + 1)))
6120nnred 12265 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℝ)
6261ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ∈ ℝ)
63 fz1ssnn 13572 . . . . . . . . . . . . . . . . 17 (1...𝑁) ⊆ ℕ
6463, 4sselid 3974 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℕ)
6564nnred 12265 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ)
6665ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
6722nnred 12265 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℝ)
6867ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
69 1red 11252 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 1 ∈ ℝ)
7068, 69readdcld 11280 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑗 + 1) ∈ ℝ)
7152adantr 479 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝐼)
7264nnzd 12623 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ ℤ)
7372ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℤ)
7422nnzd 12623 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℤ)
7574ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℤ)
7666, 68, 58nltled 11401 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼𝑗)
77 zleltp1 12651 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐼𝑗𝐼 < (𝑗 + 1)))
7877biimpa 475 . . . . . . . . . . . . . . 15 (((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ 𝐼𝑗) → 𝐼 < (𝑗 + 1))
7973, 75, 76, 78syl21anc 836 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 < (𝑗 + 1))
8062, 66, 70, 71, 79lttrd 11412 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < (𝑗 + 1))
8162, 80ltned 11387 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ≠ (𝑗 + 1))
8281neneqd 2934 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = (𝑗 + 1))
8362, 66, 68, 71, 76ltletrd 11411 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝑗)
8462, 83ltned 11387 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖𝑗)
8584neneqd 2934 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗)
8682, 852falsed 375 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = (𝑗 + 1) ↔ 𝑖 = 𝑗))
8760, 86bitrd 278 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
8857, 87pm2.61dan 811 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
8954, 88bitrd 278 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
90 simpr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ¬ 𝑖 < 𝐼)
9190iffalsed 4541 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = (𝑖 + 1))
9291eqeq1d 2727 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))))
93 simpr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼)
9493iftrued 4538 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗)
9594eqeq2d 2736 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = 𝑗))
9667ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℝ)
9765ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℝ)
9861ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℝ)
99 1red 11252 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 1 ∈ ℝ)
10098, 99readdcld 11280 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ∈ ℝ)
10172ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℤ)
10220nnzd 12623 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℤ)
103102ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℤ)
10490adantr 479 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 < 𝐼)
10597, 98, 104nltled 11401 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼𝑖)
106 zleltp1 12651 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐼𝑖𝐼 < (𝑖 + 1)))
107106biimpa 475 . . . . . . . . . . . . . . . 16 (((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐼𝑖) → 𝐼 < (𝑖 + 1))
108101, 103, 105, 107syl21anc 836 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 < (𝑖 + 1))
10996, 97, 100, 93, 108lttrd 11412 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < (𝑖 + 1))
11096, 109ltned 11387 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ≠ (𝑖 + 1))
111110necomd 2985 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ≠ 𝑗)
112111neneqd 2934 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ (𝑖 + 1) = 𝑗)
11396, 97, 98, 93, 105ltletrd 11411 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝑖)
11496, 113ltned 11387 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗𝑖)
115114necomd 2985 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖𝑗)
116115neneqd 2934 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗)
117112, 1162falsed 375 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = 𝑗𝑖 = 𝑗))
11895, 117bitrd 278 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
119 simpr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼)
120119iffalsed 4541 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1))
121120eqeq2d 2736 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = (𝑗 + 1)))
12220nncnd 12266 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℂ)
123122ad3antrrr 728 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 ∈ ℂ)
12422nncnd 12266 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℂ)
125124ad3antrrr 728 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑗 ∈ ℂ)
126 1cnd 11246 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 1 ∈ ℂ)
127 simpr 483 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → (𝑖 + 1) = (𝑗 + 1))
128123, 125, 126, 127addcan2ad 11457 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 = 𝑗)
129 simpr 483 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
130129oveq1d 7434 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → (𝑖 + 1) = (𝑗 + 1))
131128, 130impbida 799 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = (𝑗 + 1) ↔ 𝑖 = 𝑗))
132121, 131bitrd 278 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
133118, 132pm2.61dan 811 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
13492, 133bitrd 278 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
13589, 134pm2.61dan 811 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗))
136135ifbid 4553 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
137 eqid 2725 . . . . . 6 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
138 fzfid 13979 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ∈ Fin)
139 eqid 2725 . . . . . 6 (1r‘((1...(𝑁 − 1)) Mat 𝑅)) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))
140137, 26, 27, 138, 29, 19, 21, 139mat1ov 22411 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
141136, 140eqtr4d 2768 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r𝑅), (0g𝑅)) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
14225, 51, 1413eqtrd 2769 . . 3 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
143142ralrimivva 3190 . 2 (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))
1441, 2, 2, 4, 4, 16smatrcl 33548 . . . 4 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
145 elmapfn 8884 . . . 4 ((𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
146144, 145syl 17 . . 3 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
147 fzfi 13978 . . . . . 6 (1...(𝑁 − 1)) ∈ Fin
148 eqid 2725 . . . . . . 7 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
149137, 148, 139mat1bas 22412 . . . . . 6 ((𝑅 ∈ Ring ∧ (1...(𝑁 − 1)) ∈ Fin) → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
1506, 147, 149sylancl 584 . . . . 5 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
151137, 13matbas2 22384 . . . . . 6 (((1...(𝑁 − 1)) ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
152147, 6, 151sylancr 585 . . . . 5 (𝜑 → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
153150, 152eleqtrrd 2828 . . . 4 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
154 elmapfn 8884 . . . 4 ((1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
155153, 154syl 17 . . 3 (𝜑 → (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))
156 eqfnov2 7551 . . 3 (((𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))) ∧ (1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)))
157146, 155, 156syl2anc 582 . 2 (𝜑 → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)))
158143, 157mpbird 256 1 (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  ifcif 4530   class class class wbr 5149   × cxp 5676   Fn wfn 6544  cfv 6549  (class class class)co 7419  m cmap 8845  Fincfn 8964  cc 11143  cr 11144  1c1 11146   + caddc 11148   < clt 11285  cle 11286  cmin 11481  cn 12250  cz 12596  cuz 12860  ...cfz 13524  Basecbs 17199  0gc0g 17440  1rcur 20150  Ringcrg 20202   Mat cmat 22368  subMat1csmat 33545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-sup 9472  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14008  df-hash 14334  df-struct 17135  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-sca 17268  df-vsca 17269  df-ip 17270  df-tset 17271  df-ple 17272  df-ds 17274  df-hom 17276  df-cco 17277  df-0g 17442  df-gsum 17443  df-prds 17448  df-pws 17450  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19048  df-subg 19103  df-ghm 19193  df-cntz 19297  df-cmn 19766  df-abl 19767  df-mgp 20104  df-rng 20122  df-ur 20151  df-ring 20204  df-subrg 20537  df-lmod 20774  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21700  df-frlm 21715  df-mamu 22352  df-mat 22369  df-smat 33546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator