Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . . 5
⊢ (𝐼(subMat1‘ 1 )𝐼) = (𝐼(subMat1‘ 1 )𝐼) |
2 | | 1smat1.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
3 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ) |
4 | | 1smat1.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
5 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁)) |
6 | | 1smat1.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | | fzfi 13703 |
. . . . . . . 8
⊢
(1...𝑁) ∈
Fin |
8 | | eqid 2740 |
. . . . . . . . 9
⊢
((1...𝑁) Mat 𝑅) = ((1...𝑁) Mat 𝑅) |
9 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘((1...𝑁)
Mat 𝑅)) =
(Base‘((1...𝑁) Mat
𝑅)) |
10 | | 1smat1.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘((1...𝑁) Mat 𝑅)) |
11 | 8, 9, 10 | mat1bas 21609 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (1...𝑁) ∈ Fin) → 1 ∈
(Base‘((1...𝑁) Mat
𝑅))) |
12 | 6, 7, 11 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
(Base‘((1...𝑁) Mat
𝑅))) |
13 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
14 | 8, 13 | matbas2 21581 |
. . . . . . . 8
⊢
(((1...𝑁) ∈ Fin
∧ 𝑅 ∈ Ring) →
((Base‘𝑅)
↑m ((1...𝑁)
× (1...𝑁))) =
(Base‘((1...𝑁) Mat
𝑅))) |
15 | 7, 6, 14 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))) = (Base‘((1...𝑁) Mat 𝑅))) |
16 | 12, 15 | eleqtrrd 2844 |
. . . . . 6
⊢ (𝜑 → 1 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
17 | 16 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 1 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
18 | | fz1ssnn 13298 |
. . . . . 6
⊢
(1...(𝑁 − 1))
⊆ ℕ |
19 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1))) |
20 | 18, 19 | sselid 3924 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ) |
21 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1))) |
22 | 18, 21 | sselid 3924 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ) |
23 | | eqidd 2741 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))) |
24 | | eqidd 2741 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))) |
25 | 1, 3, 3, 5, 5, 17,
20, 22, 23, 24 | smatlem 31756 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)))) |
26 | | eqid 2740 |
. . . . 5
⊢
(1r‘𝑅) = (1r‘𝑅) |
27 | | eqid 2740 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
28 | 7 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...𝑁) ∈ Fin) |
29 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑅 ∈ Ring) |
30 | | nnuz 12632 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
31 | 20, 30 | eleqtrdi 2851 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈
(ℤ≥‘1)) |
32 | | fznatpl1 13321 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → (𝑖 + 1) ∈ (1...𝑁)) |
33 | 3, 19, 32 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 + 1) ∈ (1...𝑁)) |
34 | | peano2fzr 13280 |
. . . . . . . 8
⊢ ((𝑖 ∈
(ℤ≥‘1) ∧ (𝑖 + 1) ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) |
35 | 31, 33, 34 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁)) |
36 | 35, 33 | jca 512 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁))) |
37 | | eleq1 2828 |
. . . . . . 7
⊢ (𝑖 = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → (𝑖 ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))) |
38 | | eleq1 2828 |
. . . . . . 7
⊢ ((𝑖 + 1) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) → ((𝑖 + 1) ∈ (1...𝑁) ↔ if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁))) |
39 | 37, 38 | ifboth 4504 |
. . . . . 6
⊢ ((𝑖 ∈ (1...𝑁) ∧ (𝑖 + 1) ∈ (1...𝑁)) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)) |
40 | 36, 39 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) ∈ (1...𝑁)) |
41 | 22, 30 | eleqtrdi 2851 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈
(ℤ≥‘1)) |
42 | | fznatpl1 13321 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝑗 + 1) ∈ (1...𝑁)) |
43 | 3, 21, 42 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 + 1) ∈ (1...𝑁)) |
44 | | peano2fzr 13280 |
. . . . . . . 8
⊢ ((𝑗 ∈
(ℤ≥‘1) ∧ (𝑗 + 1) ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
45 | 41, 43, 44 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁)) |
46 | 45, 43 | jca 512 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁))) |
47 | | eleq1 2828 |
. . . . . . 7
⊢ (𝑗 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → (𝑗 ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))) |
48 | | eleq1 2828 |
. . . . . . 7
⊢ ((𝑗 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) → ((𝑗 + 1) ∈ (1...𝑁) ↔ if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁))) |
49 | 47, 48 | ifboth 4504 |
. . . . . 6
⊢ ((𝑗 ∈ (1...𝑁) ∧ (𝑗 + 1) ∈ (1...𝑁)) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)) |
50 | 46, 49 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ∈ (1...𝑁)) |
51 | 8, 26, 27, 28, 29, 40, 50, 10 | mat1ov 21608 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) 1 if(𝑗 < 𝐼, 𝑗, (𝑗 + 1))) = if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r‘𝑅), (0g‘𝑅))) |
52 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → 𝑖 < 𝐼) |
53 | 52 | iftrued 4473 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = 𝑖) |
54 | 53 | eqeq1d 2742 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)))) |
55 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼) |
56 | 55 | iftrued 4473 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗) |
57 | 56 | eqeq2d 2751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
58 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼) |
59 | 58 | iffalsed 4476 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1)) |
60 | 59 | eqeq2d 2751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = (𝑗 + 1))) |
61 | 20 | nnred 11999 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℝ) |
62 | 61 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ∈ ℝ) |
63 | | fz1ssnn 13298 |
. . . . . . . . . . . . . . . . 17
⊢
(1...𝑁) ⊆
ℕ |
64 | 63, 4 | sselid 3924 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 ∈ ℕ) |
65 | 64 | nnred 11999 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼 ∈ ℝ) |
66 | 65 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℝ) |
67 | 22 | nnred 11999 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℝ) |
68 | 67 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℝ) |
69 | | 1red 10987 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 1 ∈ ℝ) |
70 | 68, 69 | readdcld 11015 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑗 + 1) ∈ ℝ) |
71 | 52 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝐼) |
72 | 64 | nnzd 12436 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 ∈ ℤ) |
73 | 72 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ∈ ℤ) |
74 | 22 | nnzd 12436 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℤ) |
75 | 74 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑗 ∈ ℤ) |
76 | 66, 68, 58 | nltled 11136 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 ≤ 𝑗) |
77 | | zleltp1 12382 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐼 ≤ 𝑗 ↔ 𝐼 < (𝑗 + 1))) |
78 | 77 | biimpa 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ 𝐼 ≤ 𝑗) → 𝐼 < (𝑗 + 1)) |
79 | 73, 75, 76, 78 | syl21anc 835 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝐼 < (𝑗 + 1)) |
80 | 62, 66, 70, 71, 79 | lttrd 11147 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < (𝑗 + 1)) |
81 | 62, 80 | ltned 11122 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ≠ (𝑗 + 1)) |
82 | 81 | neneqd 2950 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = (𝑗 + 1)) |
83 | 62, 66, 68, 71, 76 | ltletrd 11146 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 < 𝑗) |
84 | 62, 83 | ltned 11122 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → 𝑖 ≠ 𝑗) |
85 | 84 | neneqd 2950 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗) |
86 | 82, 85 | 2falsed 377 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = (𝑗 + 1) ↔ 𝑖 = 𝑗)) |
87 | 60, 86 | bitrd 278 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
88 | 57, 87 | pm2.61dan 810 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (𝑖 = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
89 | 54, 88 | bitrd 278 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
90 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ¬ 𝑖 < 𝐼) |
91 | 90 | iffalsed 4476 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = (𝑖 + 1)) |
92 | 91 | eqeq1d 2742 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)))) |
93 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝐼) |
94 | 93 | iftrued 4473 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = 𝑗) |
95 | 94 | eqeq2d 2751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = 𝑗)) |
96 | 67 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ∈ ℝ) |
97 | 65 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℝ) |
98 | 61 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℝ) |
99 | | 1red 10987 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 1 ∈ ℝ) |
100 | 98, 99 | readdcld 11015 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ∈ ℝ) |
101 | 72 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ∈ ℤ) |
102 | 20 | nnzd 12436 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℤ) |
103 | 102 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ∈ ℤ) |
104 | 90 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 < 𝐼) |
105 | 97, 98, 104 | nltled 11136 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 ≤ 𝑖) |
106 | | zleltp1 12382 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐼 ≤ 𝑖 ↔ 𝐼 < (𝑖 + 1))) |
107 | 106 | biimpa 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐼 ≤ 𝑖) → 𝐼 < (𝑖 + 1)) |
108 | 101, 103,
105, 107 | syl21anc 835 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝐼 < (𝑖 + 1)) |
109 | 96, 97, 100, 93, 108 | lttrd 11147 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < (𝑖 + 1)) |
110 | 96, 109 | ltned 11122 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ≠ (𝑖 + 1)) |
111 | 110 | necomd 3001 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → (𝑖 + 1) ≠ 𝑗) |
112 | 111 | neneqd 2950 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ (𝑖 + 1) = 𝑗) |
113 | 96, 97, 98, 93, 105 | ltletrd 11146 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 < 𝑖) |
114 | 96, 113 | ltned 11122 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑗 ≠ 𝑖) |
115 | 114 | necomd 3001 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → 𝑖 ≠ 𝑗) |
116 | 115 | neneqd 2950 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ¬ 𝑖 = 𝑗) |
117 | 112, 116 | 2falsed 377 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = 𝑗 ↔ 𝑖 = 𝑗)) |
118 | 95, 117 | bitrd 278 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
119 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ¬ 𝑗 < 𝐼) |
120 | 119 | iffalsed 4476 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) = (𝑗 + 1)) |
121 | 120 | eqeq2d 2751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ (𝑖 + 1) = (𝑗 + 1))) |
122 | 20 | nncnd 12000 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℂ) |
123 | 122 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 ∈ ℂ) |
124 | 22 | nncnd 12000 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℂ) |
125 | 124 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑗 ∈ ℂ) |
126 | | 1cnd 10981 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 1 ∈
ℂ) |
127 | | simpr 485 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → (𝑖 + 1) = (𝑗 + 1)) |
128 | 123, 125,
126, 127 | addcan2ad 11192 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ (𝑖 + 1) = (𝑗 + 1)) → 𝑖 = 𝑗) |
129 | | simpr 485 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗) |
130 | 129 | oveq1d 7287 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) ∧ 𝑖 = 𝑗) → (𝑖 + 1) = (𝑗 + 1)) |
131 | 128, 130 | impbida 798 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = (𝑗 + 1) ↔ 𝑖 = 𝑗)) |
132 | 121, 131 | bitrd 278 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) ∧ ¬ 𝑗 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
133 | 118, 132 | pm2.61dan 810 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → ((𝑖 + 1) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
134 | 92, 133 | bitrd 278 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) ∧ ¬ 𝑖 < 𝐼) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
135 | 89, 134 | pm2.61dan 810 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)) ↔ 𝑖 = 𝑗)) |
136 | 135 | ifbid 4488 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r‘𝑅), (0g‘𝑅)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
137 | | eqid 2740 |
. . . . . 6
⊢
((1...(𝑁 − 1))
Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) |
138 | | fzfid 13704 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ∈
Fin) |
139 | | eqid 2740 |
. . . . . 6
⊢
(1r‘((1...(𝑁 − 1)) Mat 𝑅)) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) |
140 | 137, 26, 27, 138, 29, 19, 21, 139 | mat1ov 21608 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
141 | 136, 140 | eqtr4d 2783 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑗 < 𝐼, 𝑗, (𝑗 + 1)), (1r‘𝑅), (0g‘𝑅)) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)) |
142 | 25, 51, 141 | 3eqtrd 2784 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)) |
143 | 142 | ralrimivva 3117 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗)) |
144 | 1, 2, 2, 4, 4, 16 | smatrcl 31755 |
. . . 4
⊢ (𝜑 → (𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
145 | | elmapfn 8645 |
. . . 4
⊢ ((𝐼(subMat1‘ 1 )𝐼) ∈ ((Base‘𝑅) ↑m
((1...(𝑁 − 1))
× (1...(𝑁 −
1)))) → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) |
146 | 144, 145 | syl 17 |
. . 3
⊢ (𝜑 → (𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) |
147 | | fzfi 13703 |
. . . . . 6
⊢
(1...(𝑁 − 1))
∈ Fin |
148 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) =
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) |
149 | 137, 148,
139 | mat1bas 21609 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (1...(𝑁 − 1)) ∈ Fin) →
(1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
150 | 6, 147, 149 | sylancl 586 |
. . . . 5
⊢ (𝜑 →
(1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
151 | 137, 13 | matbas2 21581 |
. . . . . 6
⊢
(((1...(𝑁 −
1)) ∈ Fin ∧ 𝑅
∈ Ring) → ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) =
(Base‘((1...(𝑁
− 1)) Mat 𝑅))) |
152 | 147, 6, 151 | sylancr 587 |
. . . . 5
⊢ (𝜑 → ((Base‘𝑅) ↑m
((1...(𝑁 − 1))
× (1...(𝑁 −
1)))) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
153 | 150, 152 | eleqtrrd 2844 |
. . . 4
⊢ (𝜑 →
(1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
154 | | elmapfn 8645 |
. . . 4
⊢
((1r‘((1...(𝑁 − 1)) Mat 𝑅)) ∈ ((Base‘𝑅) ↑m ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) →
(1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) |
155 | 153, 154 | syl 17 |
. . 3
⊢ (𝜑 →
(1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) |
156 | | eqfnov2 7399 |
. . 3
⊢ (((𝐼(subMat1‘ 1 )𝐼) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1))) ∧
(1r‘((1...(𝑁 − 1)) Mat 𝑅)) Fn ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))) |
157 | 146, 155,
156 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘ 1 )𝐼)𝑗) = (𝑖(1r‘((1...(𝑁 − 1)) Mat 𝑅))𝑗))) |
158 | 143, 157 | mpbird 256 |
1
⊢ (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))) |