Proof of Theorem isoun
| Step | Hyp | Ref
| Expression |
| 1 | | isoun.1 |
. . . 4
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 2 | | isof1o 7321 |
. . . 4
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝐻:𝐴–1-1-onto→𝐵) |
| 4 | | isoun.2 |
. . . 4
⊢ (𝜑 → 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)) |
| 5 | | isof1o 7321 |
. . . 4
⊢ (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷) → 𝐺:𝐶–1-1-onto→𝐷) |
| 6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺:𝐶–1-1-onto→𝐷) |
| 7 | | isoun.7 |
. . 3
⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) |
| 8 | | isoun.8 |
. . 3
⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) |
| 9 | | f1oun 6842 |
. . 3
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐻 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
| 10 | 3, 6, 7, 8, 9 | syl22anc 838 |
. 2
⊢ (𝜑 → (𝐻 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
| 11 | | elun 4133 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) |
| 12 | | elun 4133 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐴 ∪ 𝐶) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶)) |
| 13 | | isorel 7324 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 14 | 1, 13 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 15 | | f1ofn 6824 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
| 16 | 3, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐻 Fn 𝐴) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 Fn 𝐴) |
| 18 | | f1ofn 6824 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺 Fn 𝐶) |
| 19 | 6, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 Fn 𝐶) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺 Fn 𝐶) |
| 21 | 7 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑥 ∈ 𝐴)) |
| 22 | | fvun1 6975 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑥 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐻‘𝑥)) |
| 23 | 17, 20, 21, 22 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐻‘𝑥)) |
| 24 | 23 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐻‘𝑥)) |
| 25 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐻 Fn 𝐴) |
| 26 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐺 Fn 𝐶) |
| 27 | 7 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑦 ∈ 𝐴)) |
| 28 | | fvun1 6975 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐻‘𝑦)) |
| 29 | 25, 26, 27, 28 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐻‘𝑦)) |
| 30 | 29 | adantrl 716 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐻‘𝑦)) |
| 31 | 24, 30 | breq12d 5137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 32 | 14, 31 | bitr4d 282 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 33 | 32 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 34 | | isoun.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → 𝑥𝑅𝑦) |
| 35 | 34 | 3expb 1120 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → 𝑥𝑅𝑦) |
| 36 | | isoun.4 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → 𝑧𝑆𝑤) |
| 37 | 36 | 3expia 1121 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑤 ∈ 𝐷 → 𝑧𝑆𝑤)) |
| 38 | 37 | ralrimiv 3132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤) |
| 39 | 38 | ralrimiva 3133 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤) |
| 41 | | f1of 6823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
| 42 | 3, 41 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| 43 | 42 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) |
| 44 | 43 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝐻‘𝑥) ∈ 𝐵) |
| 45 | | f1of 6823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶⟶𝐷) |
| 46 | 6, 45 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
| 47 | 46 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐺‘𝑦) ∈ 𝐷) |
| 48 | 47 | adantrl 716 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝐺‘𝑦) ∈ 𝐷) |
| 49 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐻‘𝑥) → (𝑧𝑆𝑤 ↔ (𝐻‘𝑥)𝑆𝑤)) |
| 50 | | breq2 5128 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐺‘𝑦) → ((𝐻‘𝑥)𝑆𝑤 ↔ (𝐻‘𝑥)𝑆(𝐺‘𝑦))) |
| 51 | 49, 50 | rspc2v 3617 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑦) ∈ 𝐷) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤 → (𝐻‘𝑥)𝑆(𝐺‘𝑦))) |
| 52 | 44, 48, 51 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤 → (𝐻‘𝑥)𝑆(𝐺‘𝑦))) |
| 53 | 40, 52 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝐻‘𝑥)𝑆(𝐺‘𝑦)) |
| 54 | 23 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐻‘𝑥)) |
| 55 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐻 Fn 𝐴) |
| 56 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐺 Fn 𝐶) |
| 57 | 7 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑦 ∈ 𝐶)) |
| 58 | | fvun2 6976 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐺‘𝑦)) |
| 59 | 55, 56, 57, 58 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐺‘𝑦)) |
| 60 | 59 | adantrl 716 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐺‘𝑦)) |
| 61 | 53, 54, 60 | 3brtr4d 5156 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)) |
| 62 | 35, 61 | 2thd 265 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 63 | 62 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 64 | 33, 63 | jaodan 959 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 65 | 12, 64 | sylan2b 594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐴 ∪ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 66 | 65 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐴 ∪ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
| 67 | | isoun.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) → ¬ 𝑥𝑅𝑦) |
| 68 | 67 | 3expb 1120 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ¬ 𝑥𝑅𝑦) |
| 69 | | isoun.6 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐵) → ¬ 𝑧𝑆𝑤) |
| 70 | 69 | 3expia 1121 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝑤 ∈ 𝐵 → ¬ 𝑧𝑆𝑤)) |
| 71 | 70 | ralrimiv 3132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤) |
| 72 | 71 | ralrimiva 3133 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐷 ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤) |
| 74 | 46 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐺‘𝑥) ∈ 𝐷) |
| 75 | 74 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (𝐺‘𝑥) ∈ 𝐷) |
| 76 | 42 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑦) ∈ 𝐵) |
| 77 | 76 | adantrl 716 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑦) ∈ 𝐵) |
| 78 | | breq1 5127 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐺‘𝑥) → (𝑧𝑆𝑤 ↔ (𝐺‘𝑥)𝑆𝑤)) |
| 79 | 78 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐺‘𝑥) → (¬ 𝑧𝑆𝑤 ↔ ¬ (𝐺‘𝑥)𝑆𝑤)) |
| 80 | | breq2 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝐻‘𝑦) → ((𝐺‘𝑥)𝑆𝑤 ↔ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
| 81 | 80 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐻‘𝑦) → (¬ (𝐺‘𝑥)𝑆𝑤 ↔ ¬ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
| 82 | 79, 81 | rspc2v 3617 |
. . . . . . . . . . . . . 14
⊢ (((𝐺‘𝑥) ∈ 𝐷 ∧ (𝐻‘𝑦) ∈ 𝐵) → (∀𝑧 ∈ 𝐷 ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤 → ¬ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
| 83 | 75, 77, 82 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (∀𝑧 ∈ 𝐷 ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤 → ¬ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
| 84 | 73, 83 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ¬ (𝐺‘𝑥)𝑆(𝐻‘𝑦)) |
| 85 | 16 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐻 Fn 𝐴) |
| 86 | 19 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐺 Fn 𝐶) |
| 87 | 7 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑥 ∈ 𝐶)) |
| 88 | | fvun2 6976 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑥 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐺‘𝑥)) |
| 89 | 85, 86, 87, 88 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐺‘𝑥)) |
| 90 | 89 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐺‘𝑥)) |
| 91 | 29 | adantrl 716 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐻‘𝑦)) |
| 92 | 90, 91 | breq12d 5137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
| 93 | 84, 92 | mtbird 325 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ¬ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)) |
| 94 | 68, 93 | 2falsed 376 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 95 | 94 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 96 | | isorel 7324 |
. . . . . . . . . . . 12
⊢ ((𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
| 97 | 4, 96 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
| 98 | 89 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐺‘𝑥)) |
| 99 | 59 | adantrl 716 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐺‘𝑦)) |
| 100 | 98, 99 | breq12d 5137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
| 101 | 97, 100 | bitr4d 282 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 102 | 101 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 103 | 95, 102 | jaodan 959 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 104 | 12, 103 | sylan2b 594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ (𝐴 ∪ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 105 | 104 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 ∈ (𝐴 ∪ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
| 106 | 66, 105 | jaodan 959 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) → (𝑦 ∈ (𝐴 ∪ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
| 107 | 11, 106 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) → (𝑦 ∈ (𝐴 ∪ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
| 108 | 107 | ralrimiv 3132 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) → ∀𝑦 ∈ (𝐴 ∪ 𝐶)(𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 109 | 108 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∪ 𝐶)∀𝑦 ∈ (𝐴 ∪ 𝐶)(𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
| 110 | | df-isom 6545 |
. 2
⊢ ((𝐻 ∪ 𝐺) Isom 𝑅, 𝑆 ((𝐴 ∪ 𝐶), (𝐵 ∪ 𝐷)) ↔ ((𝐻 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷) ∧ ∀𝑥 ∈ (𝐴 ∪ 𝐶)∀𝑦 ∈ (𝐴 ∪ 𝐶)(𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
| 111 | 10, 109, 110 | sylanbrc 583 |
1
⊢ (𝜑 → (𝐻 ∪ 𝐺) Isom 𝑅, 𝑆 ((𝐴 ∪ 𝐶), (𝐵 ∪ 𝐷))) |