Proof of Theorem isoun
Step | Hyp | Ref
| Expression |
1 | | isoun.1 |
. . . 4
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
2 | | isof1o 7174 |
. . . 4
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝐻:𝐴–1-1-onto→𝐵) |
4 | | isoun.2 |
. . . 4
⊢ (𝜑 → 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)) |
5 | | isof1o 7174 |
. . . 4
⊢ (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷) → 𝐺:𝐶–1-1-onto→𝐷) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺:𝐶–1-1-onto→𝐷) |
7 | | isoun.7 |
. . 3
⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) |
8 | | isoun.8 |
. . 3
⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) |
9 | | f1oun 6719 |
. . 3
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐻 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
10 | 3, 6, 7, 8, 9 | syl22anc 835 |
. 2
⊢ (𝜑 → (𝐻 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
11 | | elun 4079 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) |
12 | | elun 4079 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐴 ∪ 𝐶) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶)) |
13 | | isorel 7177 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
14 | 1, 13 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
15 | | f1ofn 6701 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
16 | 3, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐻 Fn 𝐴) |
17 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 Fn 𝐴) |
18 | | f1ofn 6701 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺 Fn 𝐶) |
19 | 6, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 Fn 𝐶) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺 Fn 𝐶) |
21 | 7 | anim1i 614 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑥 ∈ 𝐴)) |
22 | | fvun1 6841 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑥 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐻‘𝑥)) |
23 | 17, 20, 21, 22 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐻‘𝑥)) |
24 | 23 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐻‘𝑥)) |
25 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐻 Fn 𝐴) |
26 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐺 Fn 𝐶) |
27 | 7 | anim1i 614 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑦 ∈ 𝐴)) |
28 | | fvun1 6841 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐻‘𝑦)) |
29 | 25, 26, 27, 28 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐻‘𝑦)) |
30 | 29 | adantrl 712 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐻‘𝑦)) |
31 | 24, 30 | breq12d 5083 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
32 | 14, 31 | bitr4d 281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
33 | 32 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
34 | | isoun.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → 𝑥𝑅𝑦) |
35 | 34 | 3expb 1118 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → 𝑥𝑅𝑦) |
36 | | isoun.4 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → 𝑧𝑆𝑤) |
37 | 36 | 3expia 1119 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑤 ∈ 𝐷 → 𝑧𝑆𝑤)) |
38 | 37 | ralrimiv 3106 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤) |
39 | 38 | ralrimiva 3107 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤) |
40 | 39 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤) |
41 | | f1of 6700 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
42 | 3, 41 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
43 | 42 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) |
44 | 43 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝐻‘𝑥) ∈ 𝐵) |
45 | | f1of 6700 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶⟶𝐷) |
46 | 6, 45 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
47 | 46 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐺‘𝑦) ∈ 𝐷) |
48 | 47 | adantrl 712 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝐺‘𝑦) ∈ 𝐷) |
49 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐻‘𝑥) → (𝑧𝑆𝑤 ↔ (𝐻‘𝑥)𝑆𝑤)) |
50 | | breq2 5074 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐺‘𝑦) → ((𝐻‘𝑥)𝑆𝑤 ↔ (𝐻‘𝑥)𝑆(𝐺‘𝑦))) |
51 | 49, 50 | rspc2v 3562 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑦) ∈ 𝐷) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤 → (𝐻‘𝑥)𝑆(𝐺‘𝑦))) |
52 | 44, 48, 51 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 𝑧𝑆𝑤 → (𝐻‘𝑥)𝑆(𝐺‘𝑦))) |
53 | 40, 52 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝐻‘𝑥)𝑆(𝐺‘𝑦)) |
54 | 23 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐻‘𝑥)) |
55 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐻 Fn 𝐴) |
56 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐺 Fn 𝐶) |
57 | 7 | anim1i 614 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑦 ∈ 𝐶)) |
58 | | fvun2 6842 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐺‘𝑦)) |
59 | 55, 56, 57, 58 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐺‘𝑦)) |
60 | 59 | adantrl 712 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐺‘𝑦)) |
61 | 53, 54, 60 | 3brtr4d 5102 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)) |
62 | 35, 61 | 2thd 264 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
63 | 62 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
64 | 33, 63 | jaodan 954 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
65 | 12, 64 | sylan2b 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐴 ∪ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
66 | 65 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐴 ∪ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
67 | | isoun.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) → ¬ 𝑥𝑅𝑦) |
68 | 67 | 3expb 1118 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ¬ 𝑥𝑅𝑦) |
69 | | isoun.6 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐵) → ¬ 𝑧𝑆𝑤) |
70 | 69 | 3expia 1119 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝑤 ∈ 𝐵 → ¬ 𝑧𝑆𝑤)) |
71 | 70 | ralrimiv 3106 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤) |
72 | 71 | ralrimiva 3107 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐷 ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤) |
74 | 46 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐺‘𝑥) ∈ 𝐷) |
75 | 74 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (𝐺‘𝑥) ∈ 𝐷) |
76 | 42 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑦) ∈ 𝐵) |
77 | 76 | adantrl 712 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑦) ∈ 𝐵) |
78 | | breq1 5073 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐺‘𝑥) → (𝑧𝑆𝑤 ↔ (𝐺‘𝑥)𝑆𝑤)) |
79 | 78 | notbid 317 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐺‘𝑥) → (¬ 𝑧𝑆𝑤 ↔ ¬ (𝐺‘𝑥)𝑆𝑤)) |
80 | | breq2 5074 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝐻‘𝑦) → ((𝐺‘𝑥)𝑆𝑤 ↔ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
81 | 80 | notbid 317 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐻‘𝑦) → (¬ (𝐺‘𝑥)𝑆𝑤 ↔ ¬ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
82 | 79, 81 | rspc2v 3562 |
. . . . . . . . . . . . . 14
⊢ (((𝐺‘𝑥) ∈ 𝐷 ∧ (𝐻‘𝑦) ∈ 𝐵) → (∀𝑧 ∈ 𝐷 ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤 → ¬ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
83 | 75, 77, 82 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (∀𝑧 ∈ 𝐷 ∀𝑤 ∈ 𝐵 ¬ 𝑧𝑆𝑤 → ¬ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
84 | 73, 83 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ¬ (𝐺‘𝑥)𝑆(𝐻‘𝑦)) |
85 | 16 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐻 Fn 𝐴) |
86 | 19 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐺 Fn 𝐶) |
87 | 7 | anim1i 614 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑥 ∈ 𝐶)) |
88 | | fvun2 6842 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 Fn 𝐴 ∧ 𝐺 Fn 𝐶 ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ 𝑥 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐺‘𝑥)) |
89 | 85, 86, 87, 88 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐺‘𝑥)) |
90 | 89 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐺‘𝑥)) |
91 | 29 | adantrl 712 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐻‘𝑦)) |
92 | 90, 91 | breq12d 5083 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐻‘𝑦))) |
93 | 84, 92 | mtbird 324 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → ¬ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)) |
94 | 68, 93 | 2falsed 376 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
95 | 94 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
96 | | isorel 7177 |
. . . . . . . . . . . 12
⊢ ((𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
97 | 4, 96 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
98 | 89 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑥) = (𝐺‘𝑥)) |
99 | 59 | adantrl 712 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐻 ∪ 𝐺)‘𝑦) = (𝐺‘𝑦)) |
100 | 98, 99 | breq12d 5083 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
101 | 97, 100 | bitr4d 281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
102 | 101 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
103 | 95, 102 | jaodan 954 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
104 | 12, 103 | sylan2b 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ (𝐴 ∪ 𝐶)) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
105 | 104 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 ∈ (𝐴 ∪ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
106 | 66, 105 | jaodan 954 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) → (𝑦 ∈ (𝐴 ∪ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
107 | 11, 106 | sylan2b 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) → (𝑦 ∈ (𝐴 ∪ 𝐶) → (𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
108 | 107 | ralrimiv 3106 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) → ∀𝑦 ∈ (𝐴 ∪ 𝐶)(𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
109 | 108 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∪ 𝐶)∀𝑦 ∈ (𝐴 ∪ 𝐶)(𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦))) |
110 | | df-isom 6427 |
. 2
⊢ ((𝐻 ∪ 𝐺) Isom 𝑅, 𝑆 ((𝐴 ∪ 𝐶), (𝐵 ∪ 𝐷)) ↔ ((𝐻 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷) ∧ ∀𝑥 ∈ (𝐴 ∪ 𝐶)∀𝑦 ∈ (𝐴 ∪ 𝐶)(𝑥𝑅𝑦 ↔ ((𝐻 ∪ 𝐺)‘𝑥)𝑆((𝐻 ∪ 𝐺)‘𝑦)))) |
111 | 10, 109, 110 | sylanbrc 582 |
1
⊢ (𝜑 → (𝐻 ∪ 𝐺) Isom 𝑅, 𝑆 ((𝐴 ∪ 𝐶), (𝐵 ∪ 𝐷))) |